1
|
Do TD, Trung TQ, Le Mong A, Huynh HQ, Lee D, Hong SJ, Vu DT, Kim M, Lee NE. Utilizing a High-Performance Piezoelectric Nanocomposite as a Self-Activating Component in Piezotronic Artificial Mechanoreceptors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604985 DOI: 10.1021/acsami.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Challenges such as poor dispersion and insufficient polarization of BaTiO3 (BTO) nanoparticles (NPs) within poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) composites have hindered their piezoelectricity, limiting their uses in pressure sensors, nanogenerators, and artificial sensory synapses. Here, we introduce a high-performance piezoelectric nanocomposite material consisting of P(VDF-TrFE)/modified-BTO (mBTO) NPs for use as a self-activating component in a piezotronic artificial mechanoreceptor. To generate high-performance piezoelectric nanocomposite materials, the surface of BTO is hydroxylated, followed by the covalent attachment of (3-aminopropyl)triethoxysilane to improve the dispersibility of mBTO NPs within the P(VDF-TrFE) matrix. We also aim to enhance the crystallization degree of P(VDF-TrFE), the efficiency characteristics of mBTO, and the poling efficiency, even when incorporating small amounts of mBTO NPs. The piezoelectric potential mechanically induced from the P(VDF-TrFE)/mBTO NPs nanocomposite was three times greater than that from P(VDF-TrFE) and twice as high as that from the P(VDF-TrFE)/BTO NPs nanocomposite. The piezoelectric potential generated by mechanical stimuli on the piezoelectric nanocomposite was utilized to activate the synaptic ionogel-gated field-effect transistor for the development of self-powered piezotronics artificial mechanoreceptors on a polyimide substrate. The device successfully emulated fast-adapting (FA) functions found in biological FA mechanoreceptors. This approach has great potential for applications to future intelligent tactile perception technology.
Collapse
Affiliation(s)
- Trung Dieu Do
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Tran Quang Trung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Anh Le Mong
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Hung Quang Huynh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Dongsu Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Seok Ju Hong
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Dong Thuc Vu
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Miso Kim
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| |
Collapse
|
2
|
Khalid MY, Arif ZU, Noroozi R, Hossain M, Ramakrishna S, Umer R. 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications. Int J Biol Macromol 2023; 251:126287. [PMID: 37573913 DOI: 10.1016/j.ijbiomac.2023.126287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Cellulose nanocrystals (CNCs) have gained significant attraction from both industrial and academic sectors, thanks to their biodegradability, non-toxicity, and renewability with remarkable mechanical characteristics. Desirable mechanical characteristics of CNCs include high stiffness, high strength, excellent flexibility, and large surface-to-volume ratio. Additionally, the mechanical properties of CNCs can be tailored through chemical modifications for high-end applications including tissue engineering, actuating, and biomedical. Modern manufacturing methods including 3D/4D printing are highly advantageous for developing sophisticated and intricate geometries. This review highlights the major developments of additive manufactured CNCs, which promote sustainable solutions across a wide range of applications. Additionally, this contribution also presents current challenges and future research directions of CNC-based composites developed through 3D/4D printing techniques for myriad engineering sectors including tissue engineering, wound healing, wearable electronics, robotics, and anti-counterfeiting applications. Overall, this review will greatly help research scientists from chemistry, materials, biomedicine, and other disciplines to comprehend the underlying principles, mechanical properties, and applications of additively manufactured CNC-based structures.
Collapse
Affiliation(s)
- Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates.
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, 51041, Pakistan.
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, UK.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|