1
|
Zhong L, Liao X, Huang H, Cui H, Huang J, Luo H, Pei Y, Lv Y, Liu P. B, N Codoped Defective Reduced Graphene Oxide as a Highly Efficient Frustrated Lewis Pairs Catalyst for the Selective Hydrogenation of α,β-Unsaturated Aldehydes to Unsaturated Alcohols. J Am Chem Soc 2025; 147:3840-3854. [PMID: 39818824 DOI: 10.1021/jacs.4c17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The development of all-solid-state frustrated Lewis pairs (FLPs) metal-free hydrogenation catalysts with excellent activity and stability remains a significant challenge. In this work, B, N codoped FLPs catalysts (De-rGO-NxBy) were prepared by the strategy of fabricating carbon defects and heteroatom doping on the surface of reduced graphene oxide and applied in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. It was found that electron-rich pyridine-N (Lewis base) and adjacent electron-deficient B-N (Lewis acid) sites could be constructed on the surface of reduced graphene oxide using dicyandiamide and metaboric acid as N and B sources, thus forming FLPs sites. More importantly, the constructed carbon defects could facilitate the formation of pyridinic-N/B-N FLPs sites, thereby improving the catalytic hydrogenation activity and the selectivity to unsaturated alcohols. Furthermore, in situ DRIFTS and DFT calculations show that the pyridinic-N/B-N FLPs sites can efficiently activate the C═O of aldehydes and H2 molecules with only 0.53 eV dissociation energy of the H-H bond. Also, the catalyst presents excellent catalytic performance in the transfer hydrogenation reactions with cyclohexanol and its derivatives as hydrogen sources. This study provides new ideas for the design and preparation of all-solid-state FLPs metal-free catalysts and promotes the green synthesis of unsaturated alcohols.
Collapse
Affiliation(s)
- Linhao Zhong
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Xiaoqing Liao
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Huaquan Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan 411105, China
| | - Haishuai Cui
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411105, China
| | - Jinmei Huang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - He'an Luo
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- Engineering Research Centre for Chemical Process Simulation and Optimization of Ministry of Education, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan 411105, China
| | - Yang Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- Engineering Research Centre for Chemical Process Simulation and Optimization of Ministry of Education, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
- postdoctoral research workstation, Anhui Huaxing Chemical Co., LTD., Maanshan 243000, China
| | - Pingle Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
- Engineering Research Centre for Chemical Process Simulation and Optimization of Ministry of Education, Xiangtan University, Xiangtan 411105, China
- National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
2
|
Yang C, Idriss H, Wang Y, Wöll C. Surface Structure and Chemistry of CeO 2 Powder Catalysts Determined by Surface-Ligand Infrared Spectroscopy (SLIR). Acc Chem Res 2024; 57:3316-3326. [PMID: 39476853 PMCID: PMC11580167 DOI: 10.1021/acs.accounts.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/20/2024]
Abstract
ConspectusCerium is the most abundant rare earth element in the Earth's crust. Its most stable oxide, cerium dioxide (CeO2, ceria), is increasingly utilized in the field of catalysis. It can catalyze redox and acid-base reactions, and serve as a component of electrocatalysts and even photocatalysts. As one of the most commonly used in situ/operando characterization methods in catalysis, infrared (IR) spectroscopy is routinely employed to monitor reaction intermediates on the surface of solid catalysts, offering profound insight into reaction mechanisms. Additionally, IR vibrational frequencies of probe molecules adsorbed on solid catalysts provide detailed information about their structure and chemical states. Numerous studies in the literature have utilized carbon monoxide and methanol as IR probe molecules on ceria particles. However, assigning their vibrational frequencies is often highly controversial due to the great complexity of the actual surface of ceria particles, which include differently oriented crystal facets, reconstructions, defects, and other structural variations. In our laboratory, taking bulk ceria single crystals with distinct orientations as model systems, we employed a highly sensitive ultrahigh vacuum (UHV) infrared spectroscopy system (THEO) to study the adsorption of CO and methanol. It turns out that the theoretical calculations adopting hybrid functionals (HSE06) can bring the theoretical predictions into agreement with the experimental results for the CO frequencies on ceria single crystal surfaces. The obtained frequencies serve as reliable references to resolve the long-standing controversial assignments for the IR bands of CO and methanol adsorbed on ceria particles. Furthermore, these characteristic frequencies allow for the determination of orientations, oxidation states and restructuring of exposed crystal facets of ceria nanoparticles, which is applicable from UHV conditions to industrially relevant pressures of up to 1 bar, and from low temperatures (∼65 K) to high temperatures (∼1000 K). We also used molecular oxygen as a probe molecule to investigate its interaction with the ceria surface, crucial for understanding ceria's redox properties. Our findings reveal that the localization of oxygen vacancies and the mechanism of dioxygen activation are highly sensitive to surface orientations. We provided the first spectroscopic evidence showing that the oxygen vacancies on ceria (111) surfaces tend to localize in deep layers. In addition, we employed N2O as a probe molecule to elucidate the origin of the photocatalytic activity of ceria and showed that the photocatalytic activity is highly sensitive to the surface orientation (i.e., surface coordination structure). This Account shows that probe-molecule infrared spectroscopy serves as a powerful in situ/operando tool for studying the surface structure and chemistry of solid catalysts, and the knowledge gained through the "Surface Science" approach is essential as a crucial benchmark.
Collapse
Affiliation(s)
- Chengwu Yang
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Hicham Idriss
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| | - Yuemin Wang
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| | - Christof Wöll
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| |
Collapse
|
3
|
Arnau M, Sanz J, Turon P, Alemán C, Sans J. Green Synthesis of Urea from Carbon Dioxide and Ammonia Catalyzed by Ultraporous Permanently Polarized Hydroxyapatite. Chempluschem 2024:e202400705. [PMID: 39540831 DOI: 10.1002/cplu.202400705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
The sustainable synthesis of urea from ammonia (NH3) and carbon dioxide (CO2) using ultraporous permanently polarized hydroxyapatite (upp-HAp) as catalyst has been explored as an advantageous CO2-revalorization strategy. As the simultaneous activation of N2 and CO2 (single-step) demands an increase of the reaction conditions, we have re-visited the industrial two-step Bazarov reaction. upp-HAp has been designed as a stable multifunctional catalyst capable of promoting both CO2 and NH3 adsorption for their subsequent C-N bond formation. Herein we report the synthesis of 1 mmol/gcat of urea with a selectivity of 97 % under strictly mild conditions (95-120 °C and 1 bar of CO2; without applying any electrical currents or UV irradiation) which represents an efficiency of ~2 % and ~30 % with respect to the NH3 and CO2 content, respectively. The study of the NH3 content, products adsorbed in the catalyst, presence of intermediates and temperature of the reaction allows unveiling the great potential of upp-HAp as a green catalyst for sustainable Bazarov reactions. Results suggest that the double-step approach could be more advantageous for both synthesizing urea and as a CO2-revalorization strategy, which in turn promotes the development of specific technologies for the independent synthesis of green NH3.
Collapse
Affiliation(s)
- Marc Arnau
- Departament d'Enginyeria Química (EEBE) and Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14. Ed. I2, 08019, Barcelona, Spain
| | - Júlia Sanz
- Departament d'Enginyeria Química (EEBE) and Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14. Ed. I2, 08019, Barcelona, Spain
| | - Pau Turon
- B. Braun Surgical, S. A. U., Carretera de Terrassa 121, 08191, Rubí, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química (EEBE) and Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14. Ed. I2, 08019, Barcelona, Spain
- Institute for Bioenfineering of Catalonia, The Barcelona Institute of Science and Technology, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Jordi Sans
- Departament d'Enginyeria Química (EEBE) and Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14. Ed. I2, 08019, Barcelona, Spain
| |
Collapse
|
4
|
Tada S, Terashima M, Shimizu D, Asakuma N, Honda S, Kumar R, Bernard S, Iwamoto Y. Novel Lewis Acid-Base Interactions in Polymer-Derived Sodium-Doped Amorphous Si-B-N Ceramic: Towards Main-Group-Mediated Hydrogen Activation. Angew Chem Int Ed Engl 2024; 63:e202410961. [PMID: 39118497 DOI: 10.1002/anie.202410961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Interest is growing in transition metal-free compounds for small molecule activation and catalysis. We discuss the opportunities arising from synthesizing sodium-doped amorphous silicon-boron-nitride (Na-doped a-SiBN). Na+ cations and 3-fold coordinated BIII moieties were incorporated into an amorphous silicon nitride network via chemical modification of a polysilazane followed by pyrolysis in ammonia (NH3) at 1000 °C. Emphasis is placed on the mechanisms of hydrogen (H2) activation within Na-doped a-SiBN structure. This material design approach allows the homogeneous distribution of Na+ and BIII moieties surrounded by SiN4 units contributing to the transformation of the BIII moieties into 4-fold coordinated geometry upon encountering H2, potentially serving as frustrated Lewis acid (FLA) sites. Exposure to H2 induced formation of frustrated Lewis base (FLB) N-= sites with Na+ as a charge-compensating cation, resulting in the in situ formation of a frustrated Lewis pair (FLP) motif (≡BFLA⋅⋅⋅Hδ-⋅⋅⋅Hδ+⋅⋅⋅:N-(Na+)=). Reversible H2 adsorption-desorption behavior with high activation energy for H2 desorption (124 kJ mol-1) suggested the H2 chemisorption on Na-doped a-SiBN. These findings highlight a future landscape full of possibilities within our reach, where we anticipate main-group-mediated small molecule activation will have an important impact on the design of more efficient catalytic processes and the discovery of new catalytic transformations.
Collapse
Affiliation(s)
- Shotaro Tada
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555, Nagoya, Japan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, IIT Madras), 600036, Chennai, India
| | - Motoharu Terashima
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555, Nagoya, Japan
| | - Daisuke Shimizu
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555, Nagoya, Japan
| | - Norifumi Asakuma
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555, Nagoya, Japan
| | - Sawao Honda
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555, Nagoya, Japan
| | - Ravi Kumar
- Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, IIT Madras), 600036, Chennai, India
| | - Samuel Bernard
- University of Limoges, CNRS, IRCER, UMR 7315, F-87000, Limoges, France
| | - Yuji Iwamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555, Nagoya, Japan
| |
Collapse
|
5
|
Krieft J, Koch H, Neumann B, Stammler HG, Lamm JH, Mix A, Mitzel NW. Adducts of Lewis acidic stibanes with phosphane chalcogenides. Dalton Trans 2024; 53:16280-16286. [PMID: 39310960 DOI: 10.1039/d4dt02268h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Starting from ClSbRF2 (RF = C2F5, 3,5-(CF3)2C6H3) and H(E)P(tBu)2 (E = O, S), we prepared the oxy- and sulphanediyl-bridged adducts RF2Sb(Cl)-E-(H)P(tBu)2, which are stable against the elimination of HCl. The different electron-withdrawing substituents and chalcogen bridging units influence the size of the Sb-E-P angle. ClSb(C2F5)2 and nBu3SnH react to give HSb(C2F5)2, which seems to interact weakly with H(O)P(tBu)2 in solution as observed via NMR. All products were characterised by NMR spectroscopy and all the stable ones were additionally characterised by X-ray diffraction and elemental analyses.
Collapse
Affiliation(s)
- Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Hannah Koch
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Jan-Hendrik Lamm
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Andreas Mix
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
6
|
Jing R, Lu X, Wang J, Xiong J, Qiao Y, Zhang R, Yu Z. CeO 2-Based Frustrated Lewis Pairs via Defective Engineering: Formation Theory, Site Characterization, and Small Molecule Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310926. [PMID: 38239093 DOI: 10.1002/smll.202310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Indexed: 06/27/2024]
Abstract
Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.
Collapse
Affiliation(s)
- Run Jing
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Jingfei Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
7
|
Hou G, Wang Q, Xu D, Fan H, Liu K, Li Y, Gu XK, Ding M. Dimethyl Carbonate Synthesis from CO 2 over CeO 2 with Electron-Enriched Lattice Oxygen Species. Angew Chem Int Ed Engl 2024; 63:e202402053. [PMID: 38494439 DOI: 10.1002/anie.202402053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Direct synthesis of dimethyl carbonate (DMC) from CO2 plays an important role in carbon neutrality, but its efficiency is still far from the practical application, due to the limited understanding of the reaction mechanism and rational design of efficient catalyst. Herein, abundant electron-enriched lattice oxygen species were introduced into CeO2 catalyst by constructing the point defects and crystal-terminated phases in the crystal reconstruction process. Benefitting from the acid-base properties modulated by the electron-enriched lattice oxygen, the optimized CeO2 catalyst exhibited a much higher DMC yield of 22.2 mmol g-1 than the reported metal-oxide-based catalysts at the similar conditions. Mechanistic investigations illustrated that the electron-enriched lattice oxygen can provide abundant sites for CO2 adsorption and activation, and was advantageous of the formation of the weakly adsorbed active methoxy species. These were facilitating to the coupling of methoxy and CO2 for the key *CH3OCOO intermediate formation. More importantly, the weakened adsorption of *CH3OCOO on the electron-enriched lattice oxygen can switch the rate-determining-step (RDS) of DMC synthesis from *CH3OCOO formation to *CH3OCOO dissociation, and lower the corresponding activation barriers, thus giving rise to a high performance. This work provides insights into the underlying reaction mechanism for DMC synthesis from CO2 and methanol and the design of highly efficient catalysts.
Collapse
Affiliation(s)
- Guoqiang Hou
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Wang
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Xu
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Haifeng Fan
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Kaidi Liu
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Yangyang Li
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
8
|
Salusso D, Ticali P, Stoian D, Wang S, Fan W, Morandi S, Borfecchia E, Bordiga S. Deciphering Local Structural Complexity in Zn/Ga-ZrO 2 CO 2 Hydrogenation Catalysts. J Phys Chem Lett 2024; 15:4494-4500. [PMID: 38634706 DOI: 10.1021/acs.jpclett.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In the last few decades, massive effort has been expended in heterogeneous catalysis to develop new materials presenting high conversion, selectivity, and stability even under high-temperature and high-pressure conditions. In this context, CO2 hydrogenation is an interesting reaction where the catalyst local structure is strongly related to the development of an active and stable material under hydrothermal conditions at T/P > 300 °C/30 bar. In order to clarify the relationship between catalyst local ordering and its activity/stability, we herein report a combined laboratory and synchrotron investigation of aliovalent element (Ce/Zn/Ga)-containing ZrO2 matrixes. The results reveal the influence of similar average structures with different short-range orderings on the catalyst properties. Moreover, a further step toward the comprehension of the oxygen vacancy formation mechanism in Ce- and Ga-ZrO2 catalysts is reported. Finally, the reported results illustrate a robust method to guide local structure determination and ultimately help to avoid overuse of the "solid solution" definition.
Collapse
Affiliation(s)
- Davide Salusso
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin, Italy
- European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France
| | - Pierfrancesco Ticali
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin, Italy
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Dragos Stoian
- The Swiss-Norwegian Beamlines (SNBL) at ESRF, BP 220, 38043 Grenoble, France
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Sara Morandi
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin, Italy
| | - Elisa Borfecchia
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin, Italy
| | - Silvia Bordiga
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin, Italy
| |
Collapse
|
9
|
Khan MN, van Ingen Y, Boruah T, McLauchlan A, Wirth T, Melen RL. Advances in CO 2 activation by frustrated Lewis pairs: from stoichiometric to catalytic reactions. Chem Sci 2023; 14:13661-13695. [PMID: 38075657 PMCID: PMC10699552 DOI: 10.1039/d3sc03907b] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2025] Open
Abstract
The rise of CO2 concentrations in the environment due to anthropogenic activities results in global warming and threatens the future of humanity and biodiversity. To address excessive CO2 emissions and its effects on climate change, efforts towards CO2 capture and conversion into value adduct products such as methane, methanol, acetic acid, and carbonates have grown. Frustrated Lewis pairs (FLPs) can activate small molecules, including CO2 and convert it into value added products. This review covers recent progress and mechanistic insights into intra- and inter-molecular FLPs comprised of varying Lewis acids and bases (from groups 13, 14, 15 of the periodic table as well as transition metals) that activate CO2 in stoichiometric and catalytic fashion towards reduced products.
Collapse
Affiliation(s)
- Md Nasim Khan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales UK
| | - Yara van Ingen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Tribani Boruah
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Adam McLauchlan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales UK
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| |
Collapse
|
10
|
Mahalingam S, Kwon DS, Kang SG, Kim J. Multicomponent X-ray Shielding Using Sulfated Cerium Oxide and Bismuth Halide Composites. Molecules 2023; 28:6045. [PMID: 37630298 PMCID: PMC10457930 DOI: 10.3390/molecules28166045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Lead is the most widely used X-ray-shielding material, but it is heavy (density ≈ 11.34 g/cm3) and toxic. Therefore, the replacement of Pb with lightweight, ecofriendly materials would be beneficial, and such materials would have applications in medicine, electronics, and aerospace engineering. However, the shielding ability of Pb-free materials is significantly lower than that of Pb itself. To maximize the radiation attenuation of non-Pb-based shielding materials, a high-attenuation cross-section, normal to the incoming X-ray direction, must be achieved. In this study, we developed efficient X-ray-shielding materials composed of sulfated cerium oxide (S-CeO2) and bismuth halides. Crucially, the materials are lightweight and mechanically flexible because of the absence of heavy metals (for example, Pb and W). Further, by pre-forming the doped metal oxide as a porous sponge matrix, and then incorporating the bismuth halides into the porous matrix, uniform, compact, and intimate composites with a high-attenuation cross-section were achieved. Owing to the synergetic effect of the doped metal oxide and bismuth halides, the resultant thin (approximately 3 mm) and lightweight (0.85 g·cm-3) composite achieved an excellent X-ray-shielding rate of approximately 92% at 60 kV, one of the highest values reported for non-heavy-metal shielding materials.
Collapse
Affiliation(s)
- Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea; (S.M.); (D.-S.K.); (S.-G.K.)
| | - Dae-Seong Kwon
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea; (S.M.); (D.-S.K.); (S.-G.K.)
| | - Seok-Gyu Kang
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea; (S.M.); (D.-S.K.); (S.-G.K.)
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea; (S.M.); (D.-S.K.); (S.-G.K.)
- Institute of Energy Transport and Fusion Research, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|