1
|
Chai L, Li R, Sun Y, Zhou K, Pan J. MOF-derived Carbon-Based Materials for Energy-Related Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413658. [PMID: 39791306 DOI: 10.1002/adma.202413658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs. In this context, this review systematically summarizes the latest advances in tailored types, processing strategies, and energy-related applications of MOF-derived CMs and focuses on the structure-activity relationship of metal-free carbon, metal-doped carbon, and metallide-doped carbon. Particularly, the intrinsic correlation and evolutionary behavior between the synergistic interaction of micro/nanostructures and active species with electrochemical performances are emphasized. Finally, unique insights and perspectives on the latest relevant research are presented, and the future development prospects and challenges of MOF-derived CMs are discussed, providing valuable guidance to boost high-performance electrochemical electrodes for a broader range of application fields.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Rui Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Song J, Kumar A, Chai L, Zhao M, Sun Y, Li X, Pan J. Ultrafast Conversion of Water and Oxygen Molecules With Dissociation of Hydrogen Bonding Effect to Achieve Extra-High Energy Efficiency of Secondary Metal-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405441. [PMID: 39114882 DOI: 10.1002/smll.202405441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Indexed: 11/21/2024]
Abstract
Metal-air secondary batteries with ultrahigh specific energies have received vast attention and are considered new promising energy storage. The slow redox reactions between oxygen-water molecules lead to low energy efficiency (55-71%) and limited applications. Herein, it is proposed that the MIL-68(In)-derived porous carbon nanotube supports the CoNiFeP heteroconjugated alloy catalyst with an overboiling point electrolyte to achieve the ultrahigh oxidation rate of water molecules. Structural characterization and density functional theory calculations reveal that the new catalyst greatly reduces the free energy of the process, and the overboiling point further accelerates the dissociation of O─H and hydrogen bonds, and the release of O2 molecules, achieving an extra-low overpotential of 110 mV@10 mA cm-2 far lower than commercial Ir/C catalysts of 192 mV at 125 °C and state-of-the-art. Furthermore, the energy efficiency of assembled rechargeable zinc-air batteries begins to break through at 85 °C, jumps at 100 °C, and reaches ultrahigh energy efficiency of 88.1% at 125 °C with an ultralow decay rate of 0.0068% after 150 cycles far superior to those of reported metal-air batteries. This work provides a new catalyst and electrolyte joint-design strategy and reexamines the battery operating temperature to construct higher energy efficiency for secondary fuel cells.
Collapse
Affiliation(s)
- Jinlu Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anuj Kumar
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Man Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xifei Li
- College of Physics and Materials Science, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Bai L, Wang D, Wang W, Yan W. An Overview and Future Perspectives of Rechargeable Flexible Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202400080. [PMID: 38533691 DOI: 10.1002/cssc.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Environmental friendliness and low-cost zinc-air batteries for flexible rechargeable applications have great potential in the field of flexible electronics and smart wearables owing to high energy density and long service life. However, the current technology of flexible rechargeable zinc-air batteries to meet the commercialization needs still facing enormous challenges due to the poor adaptability of each flexible component of the zinc-air batteries. This review focused on the latest progress over the past 5 years in designing and fabricating flexible self-standing air electrodes, flexible electrolytes and zinc electrodes of flexible Zn-air batteries, meanwhile the basic working principle of each component of flexible rechargeable zinc-air batteries and battery structures optimization are also described. Finally, challenges and prospects for the future development of flexible rechargeable zinc-air batteries are discussed. This work is intended to provide insights and general guidance for future exploration of the design and fabrication on high-performance flexible rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Linming Bai
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Dan Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenlong Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wei Yan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
4
|
Chai L, Song J, Kumar A, Miao R, Sun Y, Liu X, Yasin G, Li X, Pan J. Bimetallic-MOF Derived Carbon with Single Pt Anchored C4 Atomic Group Constructing Super Fuel Cell with Ultrahigh Power Density And Self-Change Ability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308989. [PMID: 37966064 DOI: 10.1002/adma.202308989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Pursuing high power density with low platinum catalysts loading is a huge challenge for developing high-performance fuel cells (FCs). Herein, a new super fuel cell (SFC) is proposed with ultrahigh output power via specific electric double-layer capacitance (EDLC) + oxygen reduction reaction (ORR) parallel discharge, which is achieved using the newly prepared catalyst, single-atomic platinum on bimetallic metal-organic framework (MOF)-derived hollow porous carbon nanorods (PtSA /HPCNR). The PtSA-1.74 /HPCNR-based SFC has a 3.4-time higher transient specific power density and 13.3-time longer discharge time with unique in situ self-charge and energy storage ability than 20% Pt/C-based FCs. X-ray absorption fine structure, aberration-corrected high-angle annular dark-field scanning transmission electron microscope, and density functional theory calculations demonstrate that the synergistic effect of Pt single-atoms anchored on carbon defects significantly boosts its electron transfer, ORR catalytic activity, durability, and rate performance, realizing rapid " ORR+EDLC" parallel discharge mechanism to overcome the sluggish ORR process of traditional FCs. The promising SFC leads to a new pathway to boost the power density of FCs with extra-low Pt loading.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinlu Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anuj Kumar
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rui Miao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ghulam Yasin
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, 710048, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Chai L, Li Z, Wang K, Liu X, Dai S, Liu X, Sun Y, Pan J. Ultra-Fast Recyclable and Value-Added Desulfation Method for Spent Lead Paste via Dual Intensification Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304863. [PMID: 37867231 DOI: 10.1002/advs.202304863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Indexed: 10/24/2023]
Abstract
The new low-cost clean pre-desulfation technology is very important in pyrometallurgy and hydrometallurgy. However, traditional reactors have low space-time yield and desulfation rate, resulting in high energy consumption and SO2 emissions in the industrial desulfation processes. Herein, dual rotating liquid film reactors (RLFRs) and lime are proposed to construct a recyclable, ultra-fast, and value-added desulfation method. Parameter optimization and kinetic calculations prove that the above reactions are controlled by internal diffusion, revealing that RLFR promotes the mass transfer and reaction rate. The new process greatly shortens the desulfation time of lead paste from 40 min to 10 s with a high desulfation rate of 99.7%, and the sulfation time of lime from 30 min to 30 s with a sulfation rate of 98.6% with a net profit of 55.99 ¥/ton by cost accounting. Moreover, ten batches of continuous scale-up experiments demonstrate the stability of processes, the desulfation and sulfation rates are kept at 99.7% and 98.2%, which greatly reduces the emissions of waste desulfate liquor. This work provides a new universal strategy for a sustainable, low-cost, and clean desulfation method of waste resources to achieve technical and economic feasibility.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhiyu Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Keyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaowei Liu
- Chilwee Power Group, Changxing, Zhejiang, 313100, China
| | - Shaozhen Dai
- Chilwee Power Group, Changxing, Zhejiang, 313100, China
| | - Xiaoguang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Wu Q, Xie T, Zhang L, Ding H, Gao H, Jiang J, Xu G. N,S co-doped porous carbon with Co 9S 8 prepared with a Co-FF-derived Co 3O 4 template: a bi-functional electrocatalyst for rechargeable zinc-air batteries. Dalton Trans 2023; 52:14435-14442. [PMID: 37771313 DOI: 10.1039/d3dt02439c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
To achieve broad commercialization of rechargeable metal-air batteries, the development of non-precious metal-based bi-functional oxygen electrocatalysts is critical. In this study, we prepared N,S co-doped porous carbon materials containing Co9S8 nanoparticles (Co9S8/NSC) through a one-step pyrolysis process. The process involved the pyrolysis of a polydopamine (PDA) coated Co-formic acid framework (Co-FF) derived Co3O4 and thiourea. The improved catalyst Co9S8/NSC-1 exhibited satisfactory long-term durability and superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity, the half-wave potential (E1/2) of the ORR reached 0.83 V, and the OER overpotential at 10 mA cm-2 (η10) was 300 mV. The zinc-air battery (ZAB) based on Co9S8/NSC-1 assembly had a maximum power density of 102.0 mW cm-2 and the cycle life reached 500 cycles. The material preparation method was simple, environmentally friendly and inexpensive, providing a feasible strategy for the development of non-precious metal-based electrocatalysts.
Collapse
Affiliation(s)
- Qihao Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Tao Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Li Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
- College of Chemical Engineering, Xinjiang University, Urumqi, 830046, Xinjiang, PR China
| | - Hui Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Heju Gao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Jiahui Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Guancheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| |
Collapse
|
7
|
Che K, Zhao M, Sun Y, Pan J. In Situ Synthesis of NiFeLDH/A-CBp from Pyrolytic Carbon as High-Performance Oxygen Evolution Reaction Catalyst for Water Splitting and Zinc Hydrometallurgy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113997. [PMID: 37297131 DOI: 10.3390/ma16113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Nickel-iron-layered double hydroxide (NiFeLDH) is one of the promising catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes, but its conductivity limits its large-scale application. The focus of current work is to explore low-cost, conductive substrates for large-scale production and combine them with NiFeLDH to improve its conductivity. In this work, purified and activated pyrolytic carbon black (CBp) is combined with NiFeLDH to form an NiFeLDH/A-CBp catalyst for OER. CBp not only improves the conductivity of the catalyst but also greatly reduces the size of NiFeLDH nanosheets to increase the activated surface area. In addition, ascorbic acid (AA) is introduced to enhance the coupling between NiFeLDH and A-CBp, which can be evidenced by the increase of Fe-O-Ni peak intensity in FTIR measurement. Thus, a lower overvoltage of 227 mV and larger active surface area of 43.26 mF·cm-2 are achieved in 1 M KOH solution for NiFeLDH/A-CBp. In addition, NiFeLDH/A-CBp shows good catalytic performance and stability as the anode catalyst for water splitting and Zn electrowinning in alkaline electrolytes. In Zn electrowinning with NiFeLDH/A-CBp, the low cell voltage of 2.08 V at 1000 A·m-2 results in lower energy consumption of 1.78 kW h/KgZn, which is nearly half of the 3.40 kW h/KgZn of industrial electrowinning. This work demonstrates the new application of high-value-added CBp in hydrogen production from electrolytic water and zinc hydrometallurgy to realize the recycling of waste carbon resources and reduce the consumption of fossil resources.
Collapse
Affiliation(s)
- Kai Che
- State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Man Zhao
- State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|