1
|
Liu M, Cai Z, Chen X. Signal Enhancement of Luminol-Based Electrochemiluminescence Systems and Their Applications. Chemistry 2025; 31:e202500007. [PMID: 40145889 DOI: 10.1002/chem.202500007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/28/2025]
Abstract
Electrochemiluminescence (ECL) has emerged as a powerful analytical tool owing to its low background, high sensitivity, and wide dynamic range. Luminol, a commonly used ECL emitter, is widely applied in ECL-based analysis due to its low triggering potential, cost-effectiveness, and low toxicity. Despite the significant advantages of the luminol ECL system, its relatively low luminescence efficiency limits its application in high-sensitivity detection. As a result, numerous strategies have been proposed to enhance the luminol ECL signal intensity. This review summarizes four typical ECL signal amplification strategies and analyzes their roles in improving the effectiveness of luminol-based ECL signals. Furthermore, the applications of luminol ECL in fields such as sensing, imaging analysis, and material characterization are discussed. Finally, the future research directions and potential applications of the luminol ECL system are highlighted.
Collapse
Affiliation(s)
- Mengru Liu
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou, China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou, China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Saetan J, Purahong N, La-Ongthong K, Hassa N, Chotsaeng N, Kuhakarn C, Meesin J. Electrochemically driven reductive cyclization of o-nitroanilines: synthesis of 1,2-fused benzimidazoles and benzo[ d]imidazoles. Org Biomol Chem 2025; 23:4226-4231. [PMID: 40192200 DOI: 10.1039/d5ob00214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The electrochemical synthesis of 1,2-fused benzimidazoles and benzo[d]imidazoles from o-nitroanilines in an undivided cell under constant current conditions was developed. The electrosynthesis proceeded through a tandem process involving nitro reduction/C(sp3)-H amination/condensation. The method can accommodate a broad range of o-nitroanilines and results in the desired products in yields of up to 99%. A plausible reaction mechanism was proposed on the basis of controlled experiments and cyclic voltammetry (CV) analysis. The benefits of the developed method include one-pot synthesis, open-air conditions, gram-scale synthesis and no requirement for a strong reductant.
Collapse
Affiliation(s)
- Jutamart Saetan
- Department of Chemistry and Advanced Pure and Applied Chemistry Research Unit (APAC), School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang District, Bangkok 10520, Thailand.
| | - Nitchakan Purahong
- Department of Chemistry and Advanced Pure and Applied Chemistry Research Unit (APAC), School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang District, Bangkok 10520, Thailand.
| | - Kannika La-Ongthong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Nattawoot Hassa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Nawasit Chotsaeng
- Department of Chemistry and Advanced Pure and Applied Chemistry Research Unit (APAC), School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang District, Bangkok 10520, Thailand.
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Jatuporn Meesin
- Department of Chemistry and Advanced Pure and Applied Chemistry Research Unit (APAC), School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang District, Bangkok 10520, Thailand.
| |
Collapse
|
3
|
Liu M, Liu M, Chen W, Li F, Cai S, Lin SJ, Chen X, Cai Z. Identifying N Coordination Types of Single-Atom Catalysts by Spin-Modulated Luminol Cathodic Electrochemiluminescence. Angew Chem Int Ed Engl 2025; 64:e202421755. [PMID: 39651936 DOI: 10.1002/anie.202421755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Indexed: 12/18/2024]
Abstract
The type of coordinated N atoms in the metal-N coordination structure is of paramount importance to the catalytic property of N-modified carbon-based single-atom catalysts (SACs). Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful tool for analyzing the coordination environments of SACs. Despite its efficacy, the limited availability of synchrotron light sources and the complexity of data analysis have constrained its broader application in identifying metal-N coordination types within SACs. In this work, two kind of CoN4 SACs, were prepared by varying the N source. Then their electrochemiluminescence (ECL) behavior in the luminol/dissolved oxygen system during cathodic scanning were investigated. In comparison to CoN4(pyridinic N), for which the spin density displays dz2 orbital characteristics, CoN4(pyrrolic N) exhibits dxz orbital features, which was more conducive to the subsequent cleavage of the O-O bond in O2⋅- to ⋅OH, resulting in the generation of more active intermediates *OH and the promotion of cathodic ECL emission. This work demonstrates that the ECL technique provides a novel method for the rapid identification of Co-N coordination types and the spin nature of the metal center in CoN4 SACs.
Collapse
Affiliation(s)
- Mengru Liu
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou 363000, China
| | - Mingxin Liu
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou 363000, China
| | - Wenjie Chen
- Department of Material Chemistry, College of Chemical Engineering and Material, Quanzhou Normal University, Quanzhou, Fujian 362000, P. R. China
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou 363000, China
| | - Shunyou Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou 363000, China
| | - Shu-Juan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
4
|
Dai YX, Li YX, Chauvin J, Zhang XJ, Cosnier S, Marks RS, Shan D. l-Cysteine-Tuned the Hierarchical Structure Based on Benzimidazole: Synthesis, Characterization, and Application in Ratiometric Electrochemiluminescence Immunoassay. ACS Sens 2024; 9:2176-2182. [PMID: 38537645 DOI: 10.1021/acssensors.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Efficient and robust electrochemiluminescence (ECL) emitters are crucial for enhancing the ECL immunosensor sensitivity. This study introduces a novel ECL emitter, CoBIM/Cys, featuring a hierarchical core-shell structure. The core of the structure is created through the swift coordination between the sulfhydryl and carboxyl groups of l-cysteine (l-Cys) and cobalt ions (Co2+), while the shell is constructed by sequentially coordinating benzimidazole (BIM) with Co2+. This design yields a greater specific surface area and a more intricate porous structure compared to CoBIM, markedly enhancing mass transfer and luminophore accessibility. Moreover, the l-Cys and Co2+ core introduces Co-S and Co-O catalytic sites, which improve the catalytic decomposition of H2O2, leading to an increased production of hydroperoxyl radicals (OOH•). This mechanism substantially amplifies the ECL performance. Leveraging the competitive interaction between isoluminol and BIM for OOH• during ECL emission, we developed a ratiometric immunosensor for cardiac troponin I (cTnI) detection. This immunosensor demonstrates a remarkably broad detection range (1 pg mL-1 to 10 ng mL-1), a low detection limit (0.4 pg mL-1), and exceptional reproducibility and specificity.
Collapse
Affiliation(s)
- Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jérome Chauvin
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, PR China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 90089, Israel
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
5
|
Dai YX, Li YX, Zhang XJ, Marks RS, Cosnier S, Shan D. Micelle-Assisted Confined Coordination Spaces for Benzimidazole: Enhanced Electrochemiluminescence for Nitrite Determination. ACS Sens 2024; 9:337-343. [PMID: 38194413 DOI: 10.1021/acssensors.3c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Selective and sensitive detection of nitrite has important medical and biological implications. In the present work, to obtain an enhanced electrochemiluminescence (ECL) determination of nitrite, a novel nano-ECL emitter CoBIM/cetyltrimethylammonium bromide (CTAB) was prepared via a micelle-assisted, energy-saving, and ecofriendly method based on benzimidazole (BIM) and CTAB. Unlike conventional micelle assistance, the deprotonated BIM (BIM-) preferential placement was in the palisade layer of cationic CTAB-based micelles. Enriching the original CTAB micelle with BIM- disrupted its stability and resulted in the formation of considerably smaller BIM/CTAB-based micelles, providing a confined coordination environment for BIM- and Co2+. As a result, the growth of CoBIM/CTAB was also limited. Owing to the unusual nitration reaction between BIM and nitrite, the prepared CoBIM/CTAB was successfully applied as a novel ECL probe for the detection of nitrite with a wide linear range of 1-1500 μM and a low detection limit of 0.67 μM. This work also provides a promising ECL platform for ultrasensitive monitoring of nitrite and it was applied with sausages and pickled vegetables.
Collapse
Affiliation(s)
- Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, PR China
| | - Robert S Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Serge Cosnier
- University Grenoble Alpes, CNRS, DCM UMR 5250, Grenoble F-38000, France
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100, Poland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| |
Collapse
|
6
|
Dong X, Zhang X, Ren X, Ma H, Zhang N, Li F, Ju H, Wei Q. Bandgap-Regulated Electrochemiluminescence Enhancement Strategy for Florfenicol Detection Based on ZrCuO 3: A Multimodal Luminophore. Anal Chem 2023; 95:17362-17371. [PMID: 37971307 DOI: 10.1021/acs.analchem.3c03823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The low electrochemiluminescence (ECL) efficiency issue of zirconia (ZrO2) has been a pressing problem since its discovery. In this study, a bandgap-regulated ECL enhancement strategy was developed to improve the ECL efficiency of ZrO2. Specifically, through the calcination of metal-organic frameworks (MOFs), the MOF-derived bimetallic oxide ZrCuO3 was synthesized. Compared to ZrO2, the synthesized ZrCuO3 exhibited a narrower bandgap and higher electron transfer efficiency, leading to enhanced ECL efficiency. Further investigation of the ECL emitter revealed that ZrCuO3 exhibited multimodal ECL emission: annihilation ECL and co-reactant participation ECL (including anodic ECL with tripropylamine as a co-reactant and cathodic ECL with K2S2O8 as a co-reactant). The anodic ECL with the highest efficiency was selected as the main mode for detecting the target in the aptasensor. Annihilation ECL and cathodic ECL served as alternative modes to ensure stability and continuity of the sensing system. Based on the bandgap-regulated strategy of ZrCuO3, a sensing chip with ITO as the working electrode was designed for the sensitive detection of florfenicol (FF). The constructed signal "off-on-off" aptasensor exhibited excellent detection performance for FF in the range of 0.0005-200 ng/mL. The proposed method provided a novel strategy for the analysis of other antibiotics or biomolecules.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Faying Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Zeng Q, Dong X, Ren X, Wu D, Ma H, Li Y, Wei Q. Signal-Enhanced Immunosensor-Based MOF-Derived ZrO 2 Nanomaterials as Electrochemiluminescence Emitter for D-Dimer Detection. Anal Chem 2023; 95:13596-13604. [PMID: 37643000 DOI: 10.1021/acs.analchem.3c02289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Metal oxide nanomaterials have garnered significant attention in the field of electrochemiluminescence (ECL) sensing due to their efficient, stable, and nontoxic properties. However, the current research on metal oxide nanomaterials has primarily focused on their cathodic luminescence properties, with limited reports on their anodic ECL properties. In this study, we utilized MOF-derived ZrO2 nanomaterials as luminophores to generate stable anodic ECL signals in the presence of the coreactant tripropylamine (TPrA). Additionally, a signal-enhancing immunosensor was developed to analyze D-dimer by incorporating the coreaction accelerator Cu-doped TiO2 (TiO2-Cu). The ZrO2 synthesized by calcining UiO-67 demonstrated nontoxicity and biocompatibility, exhibiting efficient and stable ECL emission in a TPrA solution. The inclusion of TiO2-Cu as a coreaction accelerator in the immunosensor resulted in the formation of a ternary system of ZrO2/TiO2-Cu/TPrA. The Cu doping effectively narrowed the bandgap of TiO2 and enhanced its conductivity. As a substrate, TiO2-Cu reacted with more TPrA, generating sufficient free radicals to effectively enhance the ECL signal of ZrO2. In this article, a short peptide ligand, NFC (NARKFYKGC), was designed to immobilize antibodies and maintain the activity of antigen-binding sites during the construction of the immunosensor. The developed immunosensor was used for the accurate detection of D-dimers, with a wide linear range of 0.05-600 ng/mL and a low detection limit of 21 pg/mL..
Collapse
Affiliation(s)
- Qingze Zeng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Dong M, Jiang D, Cao Q, Wang W, Shiigi H, Chen Z. A metal-organic framework regulated graphdiyne-based electrochemiluminescence sensor with a electrocatalytic self-acceleration effect for the detection of di-(2-ethylhexyl) phthalate. Analyst 2023; 148:4470-4478. [PMID: 37574902 DOI: 10.1039/d3an00954h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In this work, a super-sensitive electrochemiluminescence (ECL) aptamer sensor was constructed using a multiple signal amplification strategy to realize ultra-sensitive detection of di-(2-ethylhexyl) phthalate (DEHP). The incorporation of a highly efficient electrocatalytic metal-organic framework (NH2-Zr-MOF) and graphdiyne (GDY) composite has significantly enhanced the overall electrochemically active surface area, facilitating electron transfer during the entire electrochemical reaction process, and the large number of pores in graphdiyne and NH2-Zr-MOF limited a series of redox reactions within a certain range. This resulted in the generation of a greater number of SO4˙- radicals, thereby boosting the ECL intensity of the GDY in the K2S2O8 system. To increase the performance of the sensor even further, sodium ascorbate (NaAsc) as an accelerator was added to the co-reactant system. Additionally, nitrogen micro-nano bubbles with higher stability and stronger mass transfer have been introduced into the ECL system for the first time. Based on these, the aptamer as the recognition element realized the ultra-sensitive detection of DEHP in the linear range of 1.0 × 10-12 to 1.0 × 10-4 mg mL-1 with the limit of detection (LOD) of 2.43 × 10-13 mg mL-1. In summary, we have utilized the electrocatalytic activity of the porous MOF and the reducing capability of sodium ascorbate to enhance the ECL emission of GDY, which has been successfully applied to the detection of DEHP in water samples.
Collapse
Affiliation(s)
- Meihua Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
- Analysis and Testing Center, NERC Biomass of Changzhou University, China
| | - Hiroshi Shiigi
- Osaka Metropolitan University, Department of Applied Chemistry, Naka Ku, 1-2 Gakuen, Sakai, Osaka 5998570, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|