1
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
2
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
3
|
Li J, Ma S, Lin Q, Wang Q, Zhong W, Wei C, Liu J, Chen J, Wang D, Tang W, Luo T. Orchestrated copper-loaded nanoreactor for simultaneous induction of cuproptosis and immunotherapeutic intervention in colorectal cancer. Mater Today Bio 2024; 29:101326. [PMID: 39606425 PMCID: PMC11600019 DOI: 10.1016/j.mtbio.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Ion interference, including intracellular copper (Cu) overload, disrupts cellular homeostasis, triggers mitochondrial dysfunction, and activates cell-specific death channels, highlighting its significant potential in cancer therapy. Nevertheless, the insufficient intracellular Cu ions transported by existing Cu ionophores, which are small molecules with short blood half-lives, inevitably hamper the effectiveness of cuproptosis. Herein, the ESCu@HM nanoreactor, self-assembled from the integration of H-MnO2 nanoparticles with the Cu ionophore elesclomol (ES) and Cu, was fabricated to facilitate cuproptosis and further induce relevant immune responses. Specifically, the systemic circulation and tumoral accumulation of Cu, causing irreversible cuproptosis, work in conjunction with Mn2+, resulting in the repolarization of tumor-associated macrophages (TAMs) and amplification of the activation of the cGAS-STING pathway by damaged DNA fragments in the nucleus and mitochondria. This further stimulates antitumor immunity and ultimately reprograms the tumor microenvironment (TME) to inhibit tumor growth. Overall, ESCu@HM as a nanoreactor for cuproptosis and immunotherapy, not only improves the dual antitumor mechanism of ES and provides potential optimization for its clinical application, but also paves the way for innovative strategies for cuproptosis-mediated colorectal cancer (CRC) treatment.
Collapse
Affiliation(s)
- Jiasheng Li
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
- Department of Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning, China
| | - Shanshan Ma
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
| | - Qiuhua Lin
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
- Department of Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning, China
| | - Qin Wang
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
| | - Wuning Zhong
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
| | - Chunyin Wei
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
| | - Junjie Liu
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
| | - Jie Chen
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 224001, China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
- Department of Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning, China
| | - Tao Luo
- Department of Gastrointestinal Surgery, Department of Medical Ultrasound, Department of Breast, Bone & Soft Tissue Oncology, Day Oncology Unit and Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, No. 71 Hedi Road, Nanning, 530021, China
- Department of Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Nanning, China
| |
Collapse
|
4
|
Yan T, Su J, Yan T, Bian J, Ali AR, Yuan W, Wei L, Wang Y, Gao M, Ding Q, Bi L, Wang S, Han X. Self-supply of hydrogen peroxide by a bimetal-based nanocatalytic platform to enhance chemodynamic therapy for tumor treatment. NANOTECHNOLOGY 2024; 36:045101. [PMID: 39476427 DOI: 10.1088/1361-6528/ad8ce5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
The tumor microenvironment (TME) is characterized by low pH, hypoxia, and overexpression of glutathione (GSH). Owing to the complexity of tumor pathogenesis and the heterogeneity of the TME, achieving satisfactory efficacy with a single treatment method is difficult, which significantly impedes tumor treatment. In this study, composite nanoparticles of calcium-copper/alginate-hyaluronic acid (HA) (CaO2-CuO2@SA/HA NC) with pH and GSH responsiveness were prepared for the first time through a one-step synthesis using HA as a targeting ligand. Nanoparticles loaded with H2O2can enhance the chemodynamic therapy effects. Simultaneously, Cu2+can generate oxygen in the TME and alleviate hypoxia in tumor tissue. Cu2+and H2O2undergo the Fenton reaction to produce cytotoxic hydroxyl radicals and Ca2+ions, which enhance the localization and clearance of nanoparticles in tumor cells. Additionally, HA and sodium alginate (SA) were utilized to improve the targeting and biocompatibility of the nanoparticles. Fourier transform infrared, x-ray diffraction, dynamic light scattering, SEM, transmission electron microscope, and other analytical methods were used to investigate their physical and chemical properties. The results indicate that the CaO2-CuO2@SA/HA NC prepared using a one-step method had a particle size of 220 nm, a narrow particle size distribution, and a uniform morphology. The hydrogen peroxide self-supplied nanodrug delivery system exhibited excellent pH-responsive release performance and glutathione-responsive •OH release ability while also reducing the level of reactive oxide species quenching.In vitrocell experiments, no obvious side effects on normal tissues were observed; however, the inhibition rate of malignant tumors HepG2 and DU145 exceeded 50%. The preparation of CaO2-CuO2@SA/HA NC nanoparticles, which can achieve both chemokinetic therapy and ion interference therapy, has demonstrated significant potential for clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Tingxuan Yan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Jiahao Su
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Tingyuan Yan
- China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jinlei Bian
- China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ahmed R Ali
- Faculty of Pharmacy, Mansoura University, El-Mansoura 35516, Egypt
| | - Wei Yuan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Linping Wei
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Yu Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Mengting Gao
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Qiang Ding
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Lei Bi
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Shuangshou Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| | - Xinya Han
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, People's Republic of China
| |
Collapse
|
5
|
Kang W, Wang Y, Xin L, Chen L, Zhao K, Yu L, Song X, Zheng Z, Dai R, Zhang W, Zhang R. Biodegradable Cascade-Amplified Nanotheranostics for Photoacoustic-Guided Synergistic PTT/CDT/Starvation Antitumor in the NIR-II Window. Adv Healthc Mater 2024; 13:e2401459. [PMID: 38938149 DOI: 10.1002/adhm.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
The development of nanoassemblies, activated by the tumor microenvironment, capable of generating photothermal therapy (PTT) and amplifying the "ROS (·OH) storm," is essential for precise and effective synergistic tumor treatment. Herein, an innovative cascade-amplified nanotheranostics based on biodegradable Pd-BSA-GOx nanocomposite for NIR-II photoacoustic imaging (PAI) guides self-enhanced NIR-II PTT/chemodynamic therapy (CDT)/starvation synergistic therapy. The Pd-BSA-GOx demonstrates the ability to selectively convert overexpressed H2O2 into strongly toxic ·OH by a Pd/Pd2+-mediated Fenton-like reaction at a lower pH level. Simultaneously, the GOx generates H2O2 and gluconic acid, effectively disrupting nutrient supply and instigating tumor starvation therapy. More importantly, the heightened levels of H2O2 and increased acidity greatly enhance the Fenton-like reactivity, generating a significant "·OH storm," thereby achieving Pd2+-mediated cascade-amplifying CDT. The specific PTT facilitated by undegraded Pd accelerates the Fenton-like reaction, establishing a positive feedback process for self-enhancing synergetic PTT/CDT/starvation therapy via the NIR-II guided-PAI. Therefore, the multifunctional nanotheranostics presents a simple and versatile strategy for the precision diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Weiwei Kang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuhang Wang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Xin
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lin Chen
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Keqi Zhao
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lujie Yu
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaorui Song
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Rong Dai
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Weiwei Zhang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| |
Collapse
|
6
|
Gu D, Zhu L, Wang Z, Zhi X, Liu M, Ge S, Sun B, Liang X, Wu H, Wang Y. Multi-responsive cascade enzyme-like catalytic nanoassembly for ferroptosis amplification and nanozyme-assisted mild photothermal therapy. Acta Biomater 2024; 187:366-380. [PMID: 39209133 DOI: 10.1016/j.actbio.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis is greatly restricted by low reactive oxygen species (ROS) generation efficiency, and the inherent self-protection mechanism originating in heat shock proteins (HSPs) seriously impedes the efficiency of photothermal therapy (PTT). Herein, we designed an intelligent strategy utilizing cascade catalytic nanoassemblies (Au@COF@MnO2) with triple-enzyme activity for amplifying ferroptosis therapy and improving the efficiency of PTT in tumor. Gold nanozyme was encapsulated within a hollow manganese dioxide (MnO2) shell with the help of covalent organic frameworks (COFs). The nanoassemblies possess the ability of photothermal conversion. Mechanism studies suggested that glutathione (GSH) depletion by Au@COF@MnO2 leads to the inactivation of glutathione peroxidase 4 (GPX4). This effect synergized with Mn2+-mediated reactive oxygen species (ROS) generation to enhance the accumulation of lipid peroxide (LPO), thereby inducing high-efficiency ferroptosis. Notably, gold nanozyme facilitated the conversion of glucose into gluconic acid and hydrogen peroxide (H2O2). This process augmented the endogenous H2O2 levels necessary for Fenton chemistry, which could effectively promote the generation of ROS. Simultaneously, glucose depletion downregulated the expression of HSPs induced by hyperthermia, consequently reducing cellular heat resistance for enhancing PTT. Therefore, the cascade catalytic nanoassembly not only exhibits high tumor inhibition and admirable biosafety, but also possesses trimodal imaging performance for imaging-guided tumor therapy in vivo, holding great potential for clinical application. STATEMENT OF SIGNIFICANCE: This study engineered multi-responsive cascade catalytic nanoassembly (Au@COF@MnO2) with triple enzymatic functions for amplifying ferroptosis therapy and improving the efficiency of PTT in tumor. The nanoassembly exhibited multi-responsive release and great photothermal conversion performance. Glucose consumption-evoked starvation downregulated the hyperthermia-induced expression of HSPs in tumor cells, thereby improving the efficacy of PTT. Mechanism studies suggested that GSH depletion by Au@COF@MnO2 lead to the inactivation of GPX4, which synergized with Mn2+-mediated ROS generation to bolster the accumulation of LPO, thereby inducing high-efficiency ferroptosis. Moreover, the nanoassembly demonstrated trimodal (PT, PA, and MR) imaging in vivo, enabling the visualization of the tumor treatment with nanoassembly. Such nanoassembly exhibited high tumor inhibition and admirable biosafety in tumor therapy in vivo, holding a great potential for clinical application.
Collapse
Affiliation(s)
- Dihai Gu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Lin Zhu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China
| | - Zhaohan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Xu Zhi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Shuwang Ge
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Xiao Liang
- Department of Oncology, Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China.
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China.
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China.
| |
Collapse
|
7
|
Zhu Z, Qiao P, Liu M, Sun F, Geng M, Yao H. Blocking the utilization of carbon sources via two pathways to induce tumor starvation for cancer treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102764. [PMID: 38885751 DOI: 10.1016/j.nano.2024.102764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Glucose oxidase (GOx) is often used to starvation therapy. However, only consuming glucose cannot completely block the energy metabolism of tumor cells. Lactate can support tumor cell survival in the absence of glucose. Here, we constructed a nanoplatform (Met@HMnO2-GOx/HA) that can deplete glucose while inhibiting the compensatory use of lactate by cells to enhance the effect of tumor starvation therapy. GOx can catalyze glucose into gluconic acid and H2O2, and then HMnO2 catalyzes H2O2 into O2 to compensate for the oxygen consumed by GOx, allowing the reaction to proceed sustainably. Furthermore, metformin (Met) can inhibit the conversion of lactate to pyruvate in a redox-dependent manner and reduce the utilization of lactate by tumor cells. Met@HMnO2-GOx/HA nanoparticles maximize the efficacy of tumor starvation therapy by simultaneously inhibiting cellular utilization of two carbon sources. Therefore, this platform is expected to provide new strategies for tumor treatment.
Collapse
Affiliation(s)
- Zhihui Zhu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Pan Qiao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Meilin Geng
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hanchun Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
9
|
Liang L, Jia M, Zhao M, Deng Y, Tang J, He X, Liu Y, Yan K, Yu X, Yang H, Li C, Li Y, Li T. Progress of Nanomaterials Based on Manganese Dioxide in the Field of Tumor Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8883-8900. [PMID: 39224196 PMCID: PMC11368147 DOI: 10.2147/ijn.s477026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
As a pivotal transition metal oxide, manganese dioxide (MnO2) has garnered significant attention owing to its abundant reserves, diverse crystal structures and exceptional performance. Nanosizing MnO2 results in smaller particle sizes, larger specific surface areas, optimized material characteristics, and expanded application possibilities. With the burgeoning research efforts in this field, MnO2 has emerged as a promising nanomaterial for tumor diagnosis and therapy. The distinctive properties of MnO2 in regulating the tumor microenvironment (TME) have attracted considerable interest, leading to a rapid growth in research on MnO2-based nanomaterials for tumor diagnosis and treatment. Additionally, MnO2 nanomaterials are also gradually showing up in the regulation of chronic inflammatory diseases. In this review, we mainly summarized the recent advancements in various MnO2 nanomaterials for tumor diagnosis and therapy. Furthermore, we discuss the current challenges and future directions in the development of MnO2 nanomaterials, while also envisaging their potential for clinical translation.
Collapse
Grants
- This work was supported by the Sichuan Science and Technology Program (grant numbers 2023NSFSC0620, 2022YFS0614, 2022YFS0622, 2022YFS0627), the Luzhou Municipal People’s Government-Southwest Medical University Joint Scientific Research Project (grant number 2023LZXNYDHZ003), the Open fund for Key Laboratory of Medical Electrophysiology of Ministry of Education (grant numbers KeyME-2023-07), the Youth Science Foundation Project of Southwest Medical University (grant numbers 2023QN075, 2022QN025), the Southwest Medical University Science and Technology Project (No.2021ZKMS034), the Hejiang County People’s Hospital-Southwest Medical University Joint Scientific Research Project (grant numbers 2023HJXNYD03, 2022HJXNYD03, 2022HJXNYD14), Chinese student innovation and entrepreneurship project (202310632027)
Collapse
Affiliation(s)
- Lijuan Liang
- Department of Pharmacy, Hejiang County People’s Hospital, Luzhou, Sichuan, People’s Republic of China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nanchong Institute for Food and Drug Control, Nanchong, Sichuan, People’s Republic of China
| | - Min Zhao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yiping Deng
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Kexin Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xin Yu
- Chinese Pharmacy Laboratory, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hong Yang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yao Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Science and Technology department, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
10
|
Zhu S, Huo L, Zeng J, Chen R, Sun Y, Tan M, Fan M, Liu M, Zhao J, Huang G, Wang Y, Xiao Z, Zhao Z. Differentiated management of ROS level in tumor and kidney to alleviate Cis-platinum induced acute kidney injury with improved efficacy. J Nanobiotechnology 2024; 22:436. [PMID: 39044240 PMCID: PMC11267679 DOI: 10.1186/s12951-024-02710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Cisplatin (DDP) is a prevalent chemotherapeutic agent used in tumor therapy, yet DDP-induced acute kidney injury (AKI) severely limits its clinical application. Antioxidants as reactive oxygen species (ROS) scavengers can circumvent this adverse effect while leading to the decrease of efficacy to tumor. Herein, we report ultrasmall ruthenium nanoparticles (URNPs) as switchable ROS scavengers/generators to alleviate DDP-induced AKI and improve its therapeutic efficacy. In the physiological environment of the kidney, URNPs mimic multi-enzyme activities, such as superoxide dismutase and catalase, effectively protecting the renal cell and tissue by down-regulating the increased ROS level caused by DDP and alleviating AKI. Specifically, URNPs are oxidized by high levels of H2O2 in the tumor microenvironment (TME), resulting in the generation of oxygen vacancies and Ru3+/Ru4+ ions. This unique structure transformation endows URNPs to generate singlet oxygen (1O2) under laser irradiation and hydroxyl radicals (∙OH) through a Fenton-like reaction in tumor cell and tissue. The simultaneous generation of multifarious ROS effectively improves the efficacy of DDP in vitro and in vivo. This TME-responsive ROS scavenger/generator acts as an adjuvant therapeutic agent to minimize side effects and improve the efficacy of chemotherapy drugs, providing a new avenue to chemotherapy and facilitating clinical tumor therapy.
Collapse
Affiliation(s)
- Shiqi Zhu
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yutong Sun
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Mingya Tan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Mengke Fan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Meiling Liu
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiayi Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhibo Xiao
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
11
|
Ning J, Hu G, Wu T, Zhao Y, Nie Y, Zhou Y. Dual biomarkers-activatable hollow MnO 2-Based theranostic nanoplatform for efficient breast cancer-specific multisite fluorescence imaging and synergistic therapy. Anal Chim Acta 2024; 1303:342521. [PMID: 38609263 DOI: 10.1016/j.aca.2024.342521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Theranostic nanoplatforms with integrated diagnostic imaging and multiple therapeutic functions play a vital role in precise diagnosis and efficient treatment for breast cancer, but unfortunately, these nanoplatforms are usually stuck in single-site imaging and single mode of treatment, causing unsatisfactory diagnostic and therapeutic efficiency. Herein, a dual biomarkers-activatable facile hollow mesoporous MnO2 (H-MnO2)-based theranostic nanoplatform, DNAzyme@H-MnO2-MUC1 aptamer (DHMM), was constructed for the simultaneous multi-site diagnosis and multiple treatment of breast cancer. RESULTS The DHMM acted as an integrated diagnostic and therapeutic nanoplatform that realizes multi-site fluorescence imaging-guided high-efficient photothermal/chemodynamic/gene synergistic therapy (PTT/CDT/GT) for breast cancer. The H-MnO2 exhibits high loading capacity for Cy5-MUC1 aptamer (3.05 pmoL μg-1) and FAM-DNAzyme (3.37 pmoL μg-1), and excellent quenching for the probes. In the presence of MUC1 on the cell membrane and GSH in the cytoplasm, Cy5-MUC1 aptamer and FAM-DNAzyme was activated triggering dual-channel fluorescence imaging at different sites. Moreover, the self-supplied Mn2+ was further supplied as DNAzyme cofactors to catalytic cleavage intracellular EGR-1 mRNA for high-efficient GT and stimulated the Fenton-like reaction for CDT. The H-MnO2 also showcases a favorable photothermal performance with a photothermal conversion efficiency of 44.16%, which ultimately contributes to multi-site fluorescence imaging-guided synergistic treatment with an apoptosis rate of 71.82%. SIGNIFICANCE This dual biomarker-activatable multiple therapeutic nanoplatform was realized multi-site fluorescence imaging-guided PTT/CDT/GT combination therapy for breast cancer with higher specificity and efficiency, which provides a promising theranostic nanoplatform for the precision and efficiency of breast cancer treatment.
Collapse
Affiliation(s)
- Juan Ning
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Guizhen Hu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Tian Wu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yijun Zhao
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yamin Nie
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Hao C, Shao Y, Tian J, Song J, Song F. Dual-Responsive hollow mesoporous organosilicon nanocarriers for photodynamic therapy. J Colloid Interface Sci 2024; 659:582-593. [PMID: 38198935 DOI: 10.1016/j.jcis.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
HYPOTHESIS The nano-delivery platform, -SS-HMONs@MB@MnO2 nanoparticles (SMM NPs) loaded with methylene blue (MB) as photosensitizer have excellent photodynamic therapy (PDT) effect. The disulfide bond and MnO2 give the shell redox-responsive properties. SMM NPs consume glutathione (GSH) in tumor cells, reducing the scavenging of reactive oxygen species (ROS) by GSH and enhancing the PDT effect of MB. EXPERIMENTS The GSH dual-responsive nano-delivery platform, was designed and constructed by using disulfide-doped hollow mesoporous organosilicon nanoparticles (-SS-HMONs) as intermediate responsive layer, loaded with MB as photosensitizer and coated with MnO2 as shells. The MB photosensitizer release and GSH response were characterized. The PDT effect of nanoparticles was evaluated. FINDINGS The SMM NPs were uniform in size and well dispersed. The nanoparticles could react with GSH, leading to the decomposition of MnO2 shells and the breakage of disulfide bonds in -SS-HMONs, resulted in the release of MB photosensitizer. The cell experiment showed that SMM NPs had good ROS generating ability and PDT effect after being sucked by tumor cells, which could effectively kill tumor cells. However, in vivo experiments demonstrated that SMM NPs showed slight inhibition on tumor growth. The actual effect in animals was different from the effect in cells.
Collapse
Affiliation(s)
- Caiqin Hao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China
| | - Yutong Shao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China
| | - Jiarui Tian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China
| | - Jitao Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China.
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
13
|
Jiang H, Qian P, Zhang H, Zhou J, He QT, Xu H, Wang S, Yi W, Hong XJ. Rational Design of Guanidinium-Based Bio-MCOF as a Multifunctional Nanocatalyst in Tumor Cells for Enhanced Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58593-58604. [PMID: 38051013 DOI: 10.1021/acsami.3c13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chemodynamic therapy (CDT) has emerged as a promising approach to cancer treatment, which can break the intracellular redox state balance and result in severe oxidative damage to biomolecules and organelles with the advantages of being less dependent on external stimulation, having deep tissue-healing abilities, and being resistant to drug resistance. There is considerable interest in developing CDT drugs with high efficiency and low toxicity. In this study, a new guanidinium-based biological metal covalent organic framework (Bio-MCOF), GZHMU-1@Mo, is rationally designed and synthesized as a multifunctional nanocatalyst in tumor cells for enhanced CDT. The DFT calculation and experimental results showed that due to the ability of MoO42- ion to promote electron transfer and increase the redox active site, Cu3 clusters and MoO42- ions in GZHMU-1@Mo can synergistically catalyze the production of reactive oxygen species (ROS) from oxygen and H2O2 in tumor cells, as well as degrade intracellular reducing substances, GSH and NADH, so as to disrupt the redox balance in tumor cells. Moreover, GZHMU-1@Mo exhibits a potent killing effect on tumor cells under both normal oxygen and anaerobic conditions. Further in vitro and in vivo antiproliferation studies revealed that the GZHMU-1@Mo nanoagent displays a remarkable antiproliferation effect and effectively inhibits tumor growth. Taken together, our study provides an insightful reference benchmark for the rational design of Bio-MCOF-based nanoagents with efficient CDT.
Collapse
Affiliation(s)
- Hong Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Peipei Qian
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jie Zhou
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiao-Tong He
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Huiying Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xu-Jia Hong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
14
|
Luo Y, Zhang L, Wang S, Wang Y, Hua J, Wen C, Zhao S, Liang H. H 2O 2 Self-Supply and Glutathione Depletion Engineering Nanoassemblies for NIR-II Photoacoustic Imaging of Tumor Tissues and Photothermal-Enhanced Gas Starvation-Primed Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38309-38322. [PMID: 37534669 DOI: 10.1021/acsami.3c07227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The development of tumor microenvironment (TME)-activated nanoassemblies which can produce a photoacoustic (PA) signal and enhance the H2O2 level is critical to achieve accurate diagnosis and highly efficient chemodynamic therapy (CDT). In this study, we developed nanoassemblies consisting of oxygen vacancy titanium dioxide (TiO2-x) surface-constructed copper, sulfur-doped mesoporous organosilica and glucose oxidase (TiO2-x@Cu,S-MONs@GOx, hereafter TMG). We found that highly abundant glutathione (GSH) in the TME nanoassemblies can reduce tetrasulfide bonds and Cu2+ to sulfur ions and Cu+ in the TMG nanoassemblies, respectively, causing the breakage of the tetrasulfide bond and the mesoporous structure collapse, releasing Cu+ ions and TiO2-x nanoparticles, and producing hydrogen sulfide gas, thereby achieving synergistic multimodal tumor treatment through TME-activated NIR-II PA imaging and photothermal-enhanced gas starvation-primed CDT. Therefore, the TMG nanoassemblies form a smart nanoplatform that can serve as an excellent tumor diagnosis-treatment agent by playing an important role in imaging-guided precision diagnosis of cancer and efficient targeting treatment.
Collapse
Affiliation(s)
- Yanni Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
15
|
Zhang L, Tian H, Guo Y, Yu S, Sun J, Wang H, Zhao Y, Chen X, Shen H, Geng J, Kong G, Wang F, Li Z. A Glucose Metabolic Intervention Nanoplatform for Enhanced Chemodynamic Therapy and Sensitized Photothermal Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37200589 DOI: 10.1021/acsami.3c04038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Traditional treatments for hepatocellular carcinoma (HCC) still lack effectiveness. Recently, the combined mode of chemodynamic therapy (CDT) and photothermal therapy (PTT) has shown great potential against HCC. However, insufficient Fenton reaction rates and hyperthermia-induced heat shock responses greatly impair their efficiency, hindering their further clinical application. Here, we constructed a cascade-amplified PTT/CDT nanoplatform by coating an IR780-embedded red blood cell membrane on glucose oxidase (GOx)-loaded Fe3O4 nanoparticles for effective HCC treatment. On the one hand, the nanoplatform interfered with glucose metabolism through the action of GOx to reduce the synthesis of ATP, which reduced the expression of heat shock proteins, thereby sensitizing the IR780-mediated PTT. On the other hand, hydrogen peroxide generated during GOx catalysis and the thermal effect of PTT accelerated the Fe3O4-mediated Fenton reaction, realizing enhanced CDT. Consequently, the sensitized PTT and enhanced CDT for HCC management could be simultaneously achieved by interfering with glucose metabolism, providing an alternative strategy for the effective treatment of tumors.
Collapse
Affiliation(s)
- Lu Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Institute of Cancer and Immunology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Hongwei Tian
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Ying Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Shuo Yu
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Jin Sun
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Hong Wang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Institute of Cancer and Immunology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Yang Zhao
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Xi Chen
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Institute of Cancer and Immunology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Huan Shen
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Institute of Cancer and Immunology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Jing Geng
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Fu Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an 710000, P. R. China
- Institute of Cancer and Immunology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, P. R. China
| |
Collapse
|