1
|
Wang X, Su T, Lu Z, Yu L, Sha N, Lv C, Xie Y, Ye K. Morphological engineering of monodispersed Co 2P nanocrystals for efficient alkaline water and seawater splitting. J Colloid Interface Sci 2025; 691:137389. [PMID: 40132428 DOI: 10.1016/j.jcis.2025.137389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Developing feasible synthetic strategies for preparing advanced nanomaterials with narrow size distributions and well-defined structures represents a cutting-edge field in alkaline water and seawater electrolysis. Herein, the monodispersed Co2P nanocrystals with tunable morphologies, namely one-dimensional nanorods (Co2P-R), nanoparticles (Co2P-P), and nanospheres (Co2P-S), were controllably synthesized by using a Schlenk system through optimizing the reactivity of cobalt- and phosphorus-based sources. The resulting Co2P-R exhibited superior electrocatalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH, simulated seawater, and natural seawater. Impressively, the reconstructed active species effectively avoid the chlorine evolution on Co2P-R surface and facilitate OER process. Density functional theory (DFT) calculations revealed that Co2P-R exhibited an optimal d-band center (εd) and a lower energy barrier for the rate-determining steps in both HER and OER processes in comparison with Co2P-P and Co2P-S. Additionally, the Co2P-R showed a more favorable water adsorption energy (EH2O) over Cl- adsorption energy (ECl-), which contributes to its enhanced seawater electrolysis performance. The Co2P-R||Co2P-R electrolyzer achieves a low voltage of 1.70, 1.76, and 1.76 V at 100 mA cm-2 in alkaline freshwater, simulated seawater, and natural seawater, respectively, and demonstrates stable operation for 200 h at 100 mA cm-2.
Collapse
Affiliation(s)
- Xiuwen Wang
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar 161006, China.
| | - Tingting Su
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar 161006, China
| | - Zhaohui Lu
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar 161006, China
| | - Lan Yu
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar 161006, China
| | - Ning Sha
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar 161006, China
| | - Chunmei Lv
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar 161006, China.
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, College of Chemistry, Chemical Engineering and Materials, Heilongjiang University, Harbin 150080, China
| | - Ke Ye
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
2
|
Wang Y, Wang T, Xu M, Li B, Gao Z, Zhang W, Li Z, Qu C, Feng M. Polyoxometalate superlattices derived bimetallic sulfides to accelerate acidic and alkaline hydrogen evolution reaction. J Colloid Interface Sci 2025; 679:760-768. [PMID: 39481350 DOI: 10.1016/j.jcis.2024.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Over the years, polyoxometalates (POMs) have been advocated as one of the most promising classes of molecular preassembly platform for the fabrication of highly efficient metal sulfide electrocatalysts. However, designing POMs-derived metal sulfides with high intrinsic activity, good site accessibility and structural stability for both acidic and alkaline hydrogen evolution reaction (HER) remains a great challenge because of the self-aggregation and random distribution of traditional POM precursors. Herein, we have designed a bimetallic sulfide eventually encapsulated by C3N4 walls (CoMoS@CN) for efficient HER based on a simple hydrothermal and subsequent high-temperature vulcanization using the well-designed POM superlattice assembly as precursor. The organized superlattice structure with long-range ordered arrangements of POM units provide chance to prevent the agglomeration of metal sites. The in-situ formed exterior C3N4 protective wall can accelerate the electron transfer and protect catalyst from chemical corrosion in different electrolyte. The merits combining with a large specific surface area enable CoMoS@CN with remarked HER performance of low overpotentials of 164 and 95 mV at 10 mA cm-2 in acidic and alkaline conditions. Such results are better than that of p-CoMoS@CN synthesized by pyrolysis of the corresponding physical mixtures and other comparative single metal sulfides.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ting Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Ming Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Bowen Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ze Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; School of Science, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Wenjing Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Zhaoxing Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Chaoqun Qu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
3
|
He JY, Bi HX, Liu YQ, Guo MS, An WT, Ma YY, Han ZG. Bridging Component Strategy in Phosphomolybdate-Based Sensors for Electrochemical Determination of Trace Cr(VI). Inorg Chem 2024; 63:842-851. [PMID: 38100035 DOI: 10.1021/acs.inorgchem.3c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid and sensitive electrochemical determination of trace carcinogenic Cr(VI) pollutants remains an urgent and important task, which requires the development of active sensing materials. Herein, four cases of reduced phosphomolybdates with formulas of the (H2bib)3[Zn(H2PO4)]2{Mn[P4Mo6O31H7]2}·6H2O (1), (H2bib)2[Na(H2O)]2[Mn(H2O)]2{Mn[P4Mo6O31H6]2}·5H2O (2), (H2bib)3[Mo2(μ2-O)2(H2O)4]2{Ni[P4Mo6O31H2]2}·4H2O (3), and (H2bib)2{Ni[P4Mo6O31H9]2}·9H2O (4) (bib = 4,4'-bis(1-imidazolyl)-biphenyl) were hydrothermally synthesized under the guidance of a bridging component strategy, which function as effective electrochemical sensors to detect trace Cr(VI). The difference of hybrids 1-4 is in the inorganic moiety, in which the reduced phosphomolybdates {M[P4MoV6O31]2} (M{P4Mo6}2) exhibited different arrangements bridged by different cationic components ({Zn(H2PO4)} subunit for 1, [Mn2(H2O)2]4+ dimer for 2, and [MoV2(μ2-O)2(H2O)4]6+ for 3). As a result, hybrids 1 and 3 display noticeable Cr(VI) detection activity with low detection limits of 14.3 nM (1.48 ppb) for 1 and 6.61 nM (0.69 ppb) for 3 and high sensitivities of 97.3 and 95.3 μA·mM-1, respectively, which are much beyond the World Health Organization's detection threshold (0.05 ppm) and superior to those of the contrast samples (inorganic Mn{P4Mo6}2 salt and hybrid 4), even the most reported noble-metal catalysts. This work supplies a prospective pathway to build effective electrochemical sensors based on phosphomolybdates for environmental pollutant treatment.
Collapse
Affiliation(s)
- Jing-Yan He
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Hao-Xue Bi
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yu-Qing Liu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Meng-Si Guo
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Wen-Ting An
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
4
|
Qin K, Zhu W, Wang M, Wu J, Ma M, Chen J, Liao F, Kang Z, Shao M. Carbon dots tailoring the interfacial proton and charge transfer of iridium nanowires with stress strain for boosting bifunctional hydrogen catalysis. J Colloid Interface Sci 2024; 653:434-442. [PMID: 37722172 DOI: 10.1016/j.jcis.2023.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The effective harnessing of hydrogen energy relies on the development of bifunctional electrocatalysts that facilitate hydrogen evolution/oxidation reactions (HER/HOR) with high catalytic activity. The design of such electrocatalysts requires the consideration of not only the volcano relationship with hydrogen binding energy (HBE) or hydrogen adsorption Gibbs free energy (ΔGH) but also the regulation of catalytic kinetics such as interfacial proton/electron transfer. In this work, unique one-dimensional iridium nanowires with compressive stress are successfully prepared and combined with carbon dots (Ir NWs/CDs). Acting as an electrocatalyst for HER in 0.5 M H2SO4, the optimal Ir NWs/CDs only requires an 18 mV overpotential to achieve a current density of -10 mA cm-2. Furthermore, the optimal Ir NWs/CDs shows high HOR performance with a mass activity (@ 50 mV versus RHE) 1.5 times that of 20% Pt/C and excellent anti-CO toxicity ability which is twice the level of the PtRu/C catalyst. Ir NWs/CDs exhibit enhanced HER/HOR activity due to (1) the appropriate modulation of the binding energy to hydrogen intermediate facilitated by the compressive stress applied to the Ir structure and (2) the improved proton/electron transfer kinetics by optimizing the electronic properties and surface structures through tailored CDs. This study delivers a new strategy for designing and synthesizing efficient acidic HER/HOR bifunctional catalysts.
Collapse
Affiliation(s)
- Keyang Qin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Meng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Mengjie Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jinxin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macau.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
5
|
Kakati N, Anderson L, Li G, Sua-An DM, Karmakar A, Ocon JD, Chuang PYA. Indispensable Nafion Ionomer for High-Efficiency and Stable Oxygen Evolution Reaction in Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55559-55569. [PMID: 38058109 DOI: 10.1021/acsami.3c08377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Addressing the challenge of sluggish kinetics and limited stability in alkaline oxygen evolution reactions, recent exploration of novel electrochemical catalysts offers improved prospects. To expedite the assessment of these catalysts, a half-cell rotating disk electrode is often favored for its simplicity. However, the actual catalyst performance strongly depends on the fabricated catalyst layers, which encounter mass transport overpotentials. We systematically investigate the role and sequence of electrode drop-casting methods onto a glassy carbon electrode regarding the efficiency of the oxygen evolution reaction. The catalyst layer without Nafion experiences nearly 50% activity loss post stability test, while those with Nafion exhibit less than 5% activity loss. Additionally, the sequence of application of the catalyst and Nafion also shows a significant effect on catalyst stability. The catalyst activity increases by roughly 20% after the stability test when the catalyst layer is coated first with an ionomer layer, followed by drop-casting the catalysts. Based on the half-cell results, the Nafion ionomer not only acts as a binder in the catalyst layer but also enhances the interfacial interaction between the catalyst and electrolyte, promoting performance and stability. This study provides new insights into the efficient and accurate evaluation of electrocatalyst performance and stability as well as the role of Nafion ionomer in the catalyst layer.
Collapse
Affiliation(s)
- Nitul Kakati
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Lawrence Anderson
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Guangfu Li
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Desiree Mae Sua-An
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
- Laboratory of Electrochemical Engineering, Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Ayon Karmakar
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Joey D Ocon
- Laboratory of Electrochemical Engineering, Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Po-Ya Abel Chuang
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
6
|
Joshi A, Acharya S, Devi N, Gupta R, Sharma D, Singh M. A polyoxomolybdate-based hybrid nano capsule as an antineoplastic agent. NANOSCALE ADVANCES 2023; 5:6045-6052. [PMID: 37941962 PMCID: PMC10628982 DOI: 10.1039/d3na00459g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Polyoxometalates (POMs) are versatile anionic clusters which have attracted a lot of attention in biomedical investigations. To counteract the increasing resistance effect of cancer cells and the high toxicity of chemotherapeutic treatments, POM-based metallodrugs can be strategically synthesized by adjusting the stereochemical and physicochemical features of POMs. In the present report a polyoxomolybdate (POMo) based organic-inorganic hybrid solid (C6H16N)(C6H15N)2[Mo8O26]·3H2O, solid 1, has been synthesized and its antitumoral activities have been investigated against three cancer cell lines namely, A549 (Lung cancer), HepG2 (Liver cancer), and MCF-7 (Breast cancer) with IC50 values 56.2 μmol L-1, 57.3 μmol L-1, and 55.2 μmol L-1 respectively. The structural characterization revealed that solid 1 consists of an octa molybdate-type cluster connected by three triethylamine molecules via hydrogen bonding interactions. The electron microscopy analysis suggests the nanocapsule-like morphology of solid 1 in the size range of 50-70 nm. The UV-vis absorption spectra were used to assess the binding ability of synthesized POM-based solid 1 to calf thymus DNA (ctDNA), which further explained the binding interaction between POMo and ctDNA and the binding constant was calculated to be 2.246 × 103 giving evidence of groove binding.
Collapse
Affiliation(s)
- Arti Joshi
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Sobhna Acharya
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Neeta Devi
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Monika Singh
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| |
Collapse
|
7
|
Stefanowska K, Nagórny J, Szyling J, Franczyk A. Functionalization of octaspherosilicate (HSiMe 2O) 8Si 8O 12 with buta-1,3-diynes by hydrosilylation. Sci Rep 2023; 13:14314. [PMID: 37653063 PMCID: PMC10471723 DOI: 10.1038/s41598-023-41461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrosilylation with octaspherosilicate (HSiMe2O)8Si8O12 (1) has provided hundreds of molecular and macromolecular systems so far, making this method the most popular in the synthesis of siloxane-based, nanometric, cubic, and reactive building blocks. However, there are no reports on its selective reaction with 1,3-diynes, which allows for the formation of new products with unique properties. Therefore, herein we present an efficient protocol for monohydrosilylation of symmetrically and non-symmetrically 1,4-disubstituted buta-1,3-diynes with 1. The compounds obtained bear double and triple bonds and other functionalities (e.g., Br, F, OH, SiR3), making them highly desirable, giant building blocks in organic synthesis and material chemistry. These compounds were fully characterized by 1H, 13C, 29Si, 1D NOE, 1H-13C HSQC NMR, FT-IR, and MALDI TOF MS, EA, UV-Vis, and TGA analysis. The TGA proved their high thermal stability up to 427 ℃ (Td10%) for compound 3j.
Collapse
Affiliation(s)
- Kinga Stefanowska
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jakub Nagórny
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
8
|
Huang Y, Chen H, Zhang B. Constructing Molybdenum Phosphide@Cobalt Phosphide Heterostructure Nanoarrays on Nickel Foam as a Bifunctional Electrocatalyst for Enhanced Overall Water Splitting. Molecules 2023; 28:molecules28093647. [PMID: 37175057 PMCID: PMC10180104 DOI: 10.3390/molecules28093647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The construction of multi-level heterostructure materials is an effective way to further the catalytic activity of catalysts. Here, we assembled self-supporting MoS2@Co precursor nanoarrays on the support of nickel foam by coupling the hydrothermal method and electrostatic adsorption method, followed by a low-temperature phosphating strategy to obtain Mo4P3@CoP/NF electrode materials. The construction of the Mo4P3@CoP heterojunction can lead to electron transfer from the Mo4P3 phase to the CoP phase at the phase interface region, thereby optimizing the charge structure of the active sites. Not only that, the introduction of Mo4P3 will make water molecules preferentially adsorb on its surface, which will help to reduce the water molecule decomposition energy barrier of the Mo4P3@CoP heterojunction. Subsequently, H* overflowed to the surface of CoP to generate H2 molecules, which finally showed a lower water molecule decomposition energy barrier and better intermediate adsorption energy. Based on this, the material shows excellent HER/OER dual-functional catalytic performance under alkaline conditions. It only needs 72 mV and 238 mV to reach 10 mA/cm2 for HER and OER, respectively. Meanwhile, in a two-electrode system, only 1.54 V is needed to reach 10 mA/cm2, which is even better than the commercial RuO2/NF||Pt/C/NF electrode pair. In addition, the unique self-supporting structure design ensures unimpeded electron transmission between the loaded nanoarray and the conductive substrate. The loose porous surface design is not only conducive to the full exposure of more catalytic sites on the surface but also facilitates the smooth escape of gas after production so as to improve the utilization rate of active sites. This work has important guiding significance for the design and development of high-performance bifunctional electrolytic water catalysts.
Collapse
Affiliation(s)
- Yingchun Huang
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Hongming Chen
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Busheng Zhang
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| |
Collapse
|