1
|
Carrera M, Such-Basáñez I, Marco-Lozar JP, Bueno-López A, Vilaplana-Ortego E, da Silva I, Bautista D, Fernández-Alarcón A, Calbo J, Ortí E, Curiel D. Rational Design of 7-Azaindole-Based Robust Microporous Hydrogen-Bonded Organic Framework for Gas Sorption. Angew Chem Int Ed Engl 2025; 64:e202412981. [PMID: 39141766 DOI: 10.1002/anie.202412981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
7-Azaindole has been integrated as building block with complementary N-H⋅⋅⋅N hydrogen bonding sites for the synthesis of a tetrahedral molecular tecton, namely tetra(α-carbolin-6-yl)methane, TACM. The self-assembly of this molecule results in a 3D hydrogen-bonded organic framework (HOF). This supramolecular structure constitutes a crystalline microporous material with an extraordinary thermal and chemical robustness. Single crystal X-ray diffraction reveals how the five-fold catenation of diamonoid systems, stabilized by hydrogen bonds and π-π interactions, form an interpenetrated network with monodimensional channels. The structural features of the crystalline material are also observed by transmission electron microscopy (TEM). Additionally, the microporosity of the activated TACM-HOF is characterized by gas sorption (N2, CO2, CH4 and H2) experiments performed at different pressures. A selective adsorption is observed for CO2 uptake and TACM-HOF also presents a good adsorption capacity for H2 among supramolecular organic frameworks.
Collapse
Affiliation(s)
- Manuel Carrera
- Department of Organic Chemistry-Faculty of Chemistry, University of Murcia, 30100-, Murcia, Spain
| | - Ion Such-Basáñez
- Technical Research Services (SSTTI), University of Alicante Parque Científico, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Juan Pablo Marco-Lozar
- Gas to Materials Technologies S. L., c/ El Martillo, 7, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Agustín Bueno-López
- Department of Inorganic Chemistry-Faculty of Science, University of Alicante, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Eduardo Vilaplana-Ortego
- Department of Inorganic Chemistry-Faculty of Science, University of Alicante, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Iván da Silva
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110QX, United Kingdom
| | - Delia Bautista
- Scientific Instrumentation Services, University of Murcia, 30100-, Murcia, Spain
| | - Alberto Fernández-Alarcón
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Joaquín Calbo
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Enrique Ortí
- Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - David Curiel
- Department of Organic Chemistry-Faculty of Chemistry, University of Murcia, 30100-, Murcia, Spain
| |
Collapse
|
2
|
Tingare YS, Su C, Hsu YC, Lai NW, Wang WC, Lin XC, Lai PW, Yang HY, Lew XR, Li WR. Organic-inorganic hybrid material for hole transport in inverted perovskite solar cells. CHEMSUSCHEM 2024; 17:e202301508. [PMID: 38280139 DOI: 10.1002/cssc.202301508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Hole mobility is critical to the power conversion efficiencies of perovskite solar cells (PSCs). Organic small-molecule hole-transporting materials (HTMs) have attracted considerable interest in PSCs due to their structural flexibility and operational durability, but they suffer from modest hole mobility. On the other hand, inorganic HTMs with good hole mobility are inflexible in structural variation and exhibit unsatisfactory cell efficiency. In this study, a ligand BT28 and its zinc-based coordination complex BTZ30 were synthesized, characterized, and investigated as HTMs for PSC applications. The mixed-halide perovskites can be grown uniformly with large crystalline grains on both HTMs, which exhibit similar optical and electrochemical properties. However, it was discovered that the BTZ30-based solar cell exhibited an open-circuit voltage of 1.0817 V and a high short-circuit current density of 23.1392 mA cm-2 with a champion power conversion efficiency of close to 20 %. The performance difference between the two HTMs can be attributed to the difference in their hole mobilities, which is 63.31 % higher for BTZ30 than BT28. The comparison of non-metal and metal HTMs revealed the importance of considering hybrid structures to overcome some shortcomings associated with organic and inorganic HTMs and achieve high-performance PSCs.
Collapse
Affiliation(s)
- Yogesh S Tingare
- Institute of Organic and Polymeric Materials/Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials/Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Ya-Chun Hsu
- Institute of Organic and Polymeric Materials/Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Ning-Wei Lai
- Institute of Organic and Polymeric Materials/Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Wan-Chun Wang
- Department of Chemistry, National Central University, Zhongli, 32001, Taiwan
| | - Xiang-Ching Lin
- Department of Chemistry, National Central University, Zhongli, 32001, Taiwan
| | - Penh-Wen Lai
- Institute of Organic and Polymeric Materials/Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Hsuan-Yu Yang
- Department of Chemistry, National Central University, Zhongli, 32001, Taiwan
| | - Xin-Rui Lew
- Department of Chemistry, National Central University, Zhongli, 32001, Taiwan
| | - Wen-Ren Li
- Department of Chemistry, National Central University, Zhongli, 32001, Taiwan
| |
Collapse
|
3
|
Li Y, Wang Y, Xu Z, Peng B, Li X. Key Roles of Interfaces in Inverted Metal-Halide Perovskite Solar Cells. ACS NANO 2024; 18:10688-10725. [PMID: 38600721 DOI: 10.1021/acsnano.3c11642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Metal-halide perovskite solar cells (PSCs), an emerging technology for transforming solar energy into a clean source of electricity, have reached efficiency levels comparable to those of commercial silicon cells. Compared with other types of PSCs, inverted perovskite solar cells (IPSCs) have shown promise with regard to commercialization due to their facile fabrication and excellent optoelectronic properties. The interlayer interfaces play an important role in the performance of perovskite cells, not only affecting charge transfer and transport, but also acting as a barrier against oxygen and moisture permeation. Herein, we describe and summarize the last three years of studies that summarize the advantages of interface engineering-based advances for the commercialization of IPSCs. This review includes a brief introduction of the structure and working principle of IPSCs, and analyzes how interfaces affect the performance of IPSC devices from the perspective of photovoltaic performance and device lifetime. In addition, a comprehensive summary of various interface engineering approaches to solving these problems and challenges in IPSCs, including the use of interlayers, interface modification, defect passivation, and others, is summarized. Moreover, based upon current developments and breakthroughs, fundamental and engineering perspectives on future commercialization pathways are provided for the innovation and design of next-generation IPSCs.
Collapse
Affiliation(s)
- Yue Li
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zichao Xu
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bo Peng
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xifei Li
- Key Materials & Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
4
|
Frezza F, Matěj A, Sánchez-Grande A, Carrera M, Mutombo P, Kumar M, Curiel D, Jelínek P. On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework. J Am Chem Soc 2024; 146:3531-3538. [PMID: 38269436 PMCID: PMC10859929 DOI: 10.1021/jacs.3c13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The design of supramolecular organic radical cages and frameworks is one of the main challenges in supramolecular chemistry. Their interesting material properties and wide applications make them very promising for (photo)redox catalysis, sensors, or host-guest spin-spin interactions. However, the high reactivity of radical organic systems makes the design of such supramolecular radical assemblies challenging. Here, we report the on-surface synthesis of a purely organic supramolecular radical framework on Au(111), by combining supramolecular and on-surface chemistry. We employ a tripodal precursor, functionalized with 7-azaindole groups that, catalyzed by a single gold atom on the surface, forms a radical molecular product constituted by a π-extended fluoradene-based radical core. The radical products self-assemble through hydrogen bonding, leading to extended 2D domains ordered in a Kagome-honeycomb lattice. This approach demonstrates the potential of on-surface synthesis for developing 2D supramolecular radical organic chemistry.
Collapse
Affiliation(s)
- Federico Frezza
- Institute
of Physics of Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6 ,Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7,11519 Prague 1, Czech Republic
| | - Adam Matěj
- Institute
of Physics of Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6 ,Czech Republic
- Department
of Physical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 779 00 Olomouc, Czech Republic
| | - Ana Sánchez-Grande
- Institute
of Physics of Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6 ,Czech Republic
| | - Manuel Carrera
- Department
of Organic Chemistry, University of Murcia,
Campus of Espinardo, 30100 Murcia, Spain
| | - Pingo Mutombo
- Institute
of Physics of Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6 ,Czech Republic
- Département
de Raffinage et Pétrochimie, Faculté de Pétrole,
Gaz et Énergies Renouvelables, Université
de Kinshasa, BP 127 Kinshasa XI, République
Démocratique du Congo
| | - Manish Kumar
- Institute
of Physics of Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6 ,Czech Republic
| | - David Curiel
- Department
of Organic Chemistry, University of Murcia,
Campus of Espinardo, 30100 Murcia, Spain
| | - Pavel Jelínek
- Institute
of Physics of Czech Academy of Sciences, Cukrovarnická 10, 16200 Prague 6 ,Czech Republic
- CATRIN-RCPTM, Palacký University, Šlechtitelu° 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|