1
|
Ke HY, Chang CJ, Sung SY, Tsai CS, Lin FY, Chen JK. Capture and lyase-triggered release of circulating tumor cells using a disposable microfluidic chip embedded with core/shell nylon-6/Ca(II)-alginate immunofiber mats. J Mater Chem B 2025; 13:5027-5040. [PMID: 40033971 DOI: 10.1039/d4tb02226b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
High-efficiency capture, release, and reculture of circulating tumor cells (CTCs) can significantly advance individualized cancer treatments. To achieve efficient CTC release without compromising their viability for subsequent reculture, an effective CTC capture/release system was developed. Nylon-6 (N6) and a cross-linked alginate hydrogel with Ca(II) were used as the shell and core, respectively, to prepare N6/Ca-Alg immunofiber mats using coaxial electrospinning. A 3 wt% concentration of Ca(II) was used to increase the viscosity of the alginate solution and generate a degradable coating on the N6 fiber. After modification with streptavidin and anti-EpCAM, the N6/Ca-Alg immunofiber mat was embedded within a disposable microfluidic chip to investigate the capture capacity of CTCs. The maximum adsorption capacity of CTCs was approximately 34 cells per mm2, while the viability of the captured cells was 95.1% after being released from the fibrous mats. The outer Ca-alginate hydrogel coating effectively enhanced the viability of the released cells for reculture. In spiked blood samples, our microfluidic system was able to specifically identify DLD1 cells from 10 mL of human whole blood at a concentration of 65.6 cells per mL with 67.9% efficiency within 30 minutes. Under the flow of alginate lyase solution at 0.4 mg mL-1, the reculture efficiency of the released cells after 7 days reached 274.5%. Our proposed method provides an ideal fibrous mat to be embedded within a microfluidic chip for capturing and releasing CTCs for precision medicine applications, using recultured CTCs in individualized anti-tumor therapies.
Collapse
Affiliation(s)
- Hung-Yen Ke
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 115, Taiwan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan.
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, Republic of China
| | - Shih-Ying Sung
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 115, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Division of Cardiology, Departments of Internal Medicine, College of Medicine, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Xie L, He L, Fu Y, Wei Y, Zhang K, Chen M. A three-site recognition cytosensor for accurate detection of circulating tumor cells based on novel branched Pt Au nanospheres and MnO 2-GO-Au nanosheets. Mikrochim Acta 2025; 192:175. [PMID: 39969682 DOI: 10.1007/s00604-025-07032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
A novel electrochemical cytosensor was developed with a three-protein recognition strategy, employing branched Pt Au nanospheres (B-Pt-Au NPs) as tags and MnO2-GO-Au nanosheet-modified electrodes for circulating tumor cells (CTC) detection. This system integrates specific magnetic separation and CTC enrichment with sensitive electrochemical detection to identify rare A549 cells in whole blood. MnO2-GO-Au nanosheets, known for their high conductivity and biocompatibility, were used to modify a bare electrode, improving the electrochemical interface for biomolecules. The B-Pt-Au NPs could only approach the sensing interface and enhance the current signal through their specific electrocatalytic activity when all three specific proteins, i.e. mucin 1 (MUC1), epithelial cell adhesion molecule (EpCAM), and epidermal growth factor receptor (EGFR), of rare A549 cells in peripheral blood were simultaneously expressed on the cell membrane. The developed cytosensor demonstrated a detection limit as low as 1 cell mL⁻1 and, more importantly, could accurately distinguish A549 cells from other cancer cells. Thus, this proposed strategy offers a powerful tool for liquid biopsy analysis of extremely rare CTCs in complex peripheral blood, with potential applications in reliable early diagnosis of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Linzhi Xie
- Clinical Laboratory, Clinical Medical Collegeand , The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Linxin He
- Clinical Laboratory, Clinical Medical Collegeand , The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yang Fu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yuxin Wei
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Kun Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Mei Chen
- Clinical Laboratory, Clinical Medical Collegeand , The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
3
|
Li J, Li X, Li X, Liang Z, Wang Z, Shahzad KA, Xu M, Tan F. Local Delivery of Dual Stem Cell-Derived Exosomes Using an Electrospun Nanofibrous Platform for the Treatment of Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37497-37512. [PMID: 38980910 DOI: 10.1021/acsami.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhanping Liang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai 200070, China
- The Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
- The Royal College of Surgeons of England, London WC2A3PE, U.K
| |
Collapse
|
4
|
Wang J, Yin Y, Ren X, Wang S, Zhu Y. Electrospun nanofibrous mats loaded with gemcitabine and cisplatin suppress bladder tumor growth by improving the tumor immune microenvironment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:21. [PMID: 38526656 PMCID: PMC10963565 DOI: 10.1007/s10856-024-06786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
The perplexing issues related to positive surgical margins and the considerable negative consequences associated with systemic chemotherapy have posed ongoing challenges for clinicians, especially when it comes to addressing bladder cancer treatment. The current investigation describes the production of nanocomposites loaded with gemcitabine (GEM) and cisplatin (CDDP) through the utilization of electrospinning technology. In vitro and in vivo studies have provided evidence of the strong effectiveness in suppressing tumor advancement while simultaneously reducing the accumulation of chemotherapy drugs within liver and kidney tissues. Mechanically, the GEM and CDDP-loaded electrospun nanocomposites could effectively eliminate myeloid-derived suppressor cells (MDSCs) in tumor tissues, and recruit CD8+ T cells and NKp46+ NK cells to kill tumor cells, which can also effectively inhibit tumor microvascular formation. Our investigation into the impact of localized administration of chemotherapy through GEM and CDDP-loaded electrospun nanocomposites on the tumor microenvironment will offer novel insights for tackling tumors.
Collapse
Affiliation(s)
- Jing Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Yin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ren
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunpeng Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Wei D, Sun Y, Zhu H, Fu Q. Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics. ACS NANO 2023; 17:23223-23261. [PMID: 38041800 DOI: 10.1021/acsnano.3c06019] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Stimuli-responsive polymers can respond to internal stimuli, such as reactive oxygen species (ROS), glutathione (GSH), and pH, biological stimuli, such as enzymes, and external stimuli, such as lasers and ultrasound, etc., by changing their hydrophobicity/hydrophilicity, degradability, ionizability, etc., and thus have been widely used in biomedical applications. Due to the characteristics of the tumor microenvironment (TME), stimuli-responsive polymers that cater specifically to the TME have been extensively used to prepare smart nanovehicles for the targeted delivery of therapeutic and diagnostic agents to tumor tissues. Compared to conventional drug delivery nanosystems, TME-responsive nanosystems have many advantages, such as high sensitivity, broad applicability among different tumors, functional versatility, and improved biosafety. In recent years, a great deal of research has been devoted to engineering efficient stimuli-responsive polymeric nanosystems, and significant improvement has been made to both cancer diagnosis and therapy. In this review, we summarize some recent research advances involving the use of stimuli-responsive polymer nanocarriers in drug delivery, tumor imaging, therapy, and theranostics. Various chemical stimuli will be described in the context of stimuli-responsive nanosystems. Accordingly, the functional chemical groups responsible for the responsiveness and the strategies to incorporate these groups into the polymer will be discussed in detail. With the research on this topic expending at a fast pace, some innovative concepts, such as sequential and cascade drug release, NIR-II imaging, and multifunctional formulations, have emerged as popular strategies for enhanced performance, which will also be included here with up-to-date illustrations. We hope that this review will offer valuable insights for the selection and optimization of stimuli-responsive polymers to help accelerate their future applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hu Zhu
- Maoming People's Hospital, Guangdong 525000, China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|