1
|
Ma L, Jiang X, Gao J. Revolutionizing rheumatoid arthritis therapy: harnessing cytomembrane biomimetic nanoparticles for novel treatment strategies. Drug Deliv Transl Res 2025; 15:66-83. [PMID: 38758497 DOI: 10.1007/s13346-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease with severe implications for joint health. The issue of non-specific drug distribution potentially limits the therapeutic efficacy and increases the risk associated with RA treatment. Researchers employed cytomembrane-coated biomimetic nanoparticles (NPs) to enhance the targeting delivery efficacy to meet the demand for drug accumulation within the affected joints. Furthermore, distinct cytomembranes offer unique functionalities, such as immune cell activation and augmented NP biocompatibility. In this review, the current strategies of RA treatments were summarized in detail, and then an overview of RA's pathogenesis and the methodologies for producing cytomembrane-coated biomimetic NPs was provided. The application of cytomembrane biomimetic NPs derived from various cell sources in RA therapy is explored, highlighting the distinctive attributes of individual cytomembranes as well as hybrid membrane configurations. Through this comprehensive assessment of cytomembrane biomimetic NPs, we elucidate the prospective applications and challenges in the realm of RA therapy, and the strategy of combined therapy is proposed. In the future, cytomembrane biomimetic NPs have a broad therapeutic prospect for RA.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- College of Pharmacy, Inner Mongolia Medical University, Chilechuan dairy economic development zone, Hohhot, Inner Mongolia Autonomous Region, 010110, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Liu C, Gao J, Cheng Y, Zhang S, Fu C. Homologous-adhering/targeting cell membrane- and cell-mediated delivery systems: a cancer-catch-cancer strategy in cancer therapy. Regen Biomater 2024; 12:rbae135. [PMID: 39811105 PMCID: PMC11729729 DOI: 10.1093/rb/rbae135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Low tumor enrichment remains a serious and urgent problem for drug delivery in cancer therapy. Accurate targeting of tumor sites is still a critical aim in cancer therapy. Though there have been a variety of delivery strategies to improve the tumor targeting and enrichment, biological barriers still cause most delivered guests to fail or be excreted before they work. Recently, cell membrane-based systems have attracted a huge amount of attention due to their advantages such as easy access, good biocompatibility and immune escape, which contribute to their biomimetic structures and specific surface proteins. Furthermore, cancer cell membrane-based delivery systems are referred to as homologous-targeting function in which they exhibit significantly high adhesion and internalization to homologous-type tumor sites or cells even though the exact mechanism is not entirely revealed. Here, we summarize the sources and characterizations of cancer cell membrane systems, including reconstructed single or hybrid membrane-based nano-/microcarriers, as well as engineered cancer cells. Additionally, advanced applications of these cancer cell membrane systems in cancer therapy are categorized and summarized according to the components of membranes. The potential factors related to homologous targeting of cancer cell membrane-based systems are also discussed. By discussing the applications, challenges and opportunities, we expect the cancer cell membrane-based homologous-targeting systems to have a far-reaching development in preclinic or clinics.
Collapse
Affiliation(s)
- Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jingjie Gao
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yuying Cheng
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shanshan Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Caiyun Fu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
3
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
4
|
Ma Y, Yi J, Ruan J, Ma J, Yang Q, Zhang K, Zhang M, Zeng G, Jin L, Huang X, Li J, Yang H, Wu W, Sun D. Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation. Adv Healthc Mater 2024; 13:e2400514. [PMID: 38652681 DOI: 10.1002/adhm.202400514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Haifeng Yang
- JinFeng Laboratory, Chongqing, 401329, China
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
5
|
Zhang S, Zhang X, Gao H, Zhang X, Sun L, Huang Y, Zhang J, Ding B. Cell Membrane-Coated Biomimetic Nanoparticles in Cancer Treatment. Pharmaceutics 2024; 16:531. [PMID: 38675192 PMCID: PMC11055162 DOI: 10.3390/pharmaceutics16040531] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoparticle-based drug delivery systems hold promise for cancer treatment by enhancing the solubility and stability of anti-tumor drugs. Nonetheless, the challenges of inadequate targeting and limited biocompatibility persist. In recent years, cell membrane nano-biomimetic drug delivery systems have emerged as a focal point of research and development, due to their exceptional traits, including precise targeting, low toxicity, and good biocompatibility. This review outlines the categorization and advantages of cell membrane bionic nano-delivery systems, provides an introduction to preparation methods, and assesses their applications in cancer treatment, including chemotherapy, gene therapy, immunotherapy, photodynamic therapy, photothermal therapy, and combination therapy. Notably, the review delves into the challenges in the application of various cell membrane bionic nano-delivery systems and identifies opportunities for future advancement. Embracing cell membrane-coated biomimetic nanoparticles presents a novel and unparalleled avenue for personalized tumor therapy.
Collapse
Affiliation(s)
- Shu Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 214122, China;
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Xiaojuan Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Huan Gao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Xiaoqin Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Lidan Sun
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Yueyan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Jie Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| |
Collapse
|
6
|
Li X, Lin Y, Yang Z, Guan L, Wang Z, Liu A, Yang B, Tang L, Lin Q. Cancer cell membrane biomimetic nanosystem for homologous targeted dual-mode imaging and combined therapy. J Colloid Interface Sci 2023; 652:770-779. [PMID: 37619256 DOI: 10.1016/j.jcis.2023.08.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
HYPOTHESIS The use of tumor cell membrane-camouflaged nanoparticles, specifically the multifunctional biomimetic core-shell nanosystem MPCONPs, can enhance the targeting ability and immune escape functionality of traditional chemotherapy, leading to more precise drug delivery and improved treatment outcomes. EXPERIMENTS Preparation of MPCONPs: Autologous tumor cell membrane (CM) fragments are collected and used to create a shell for the nanoparticles. A trypsin-sensitive cationic polylysine framework is synthesized and embedded with oxaliplatin (l-OHP) and Ce6-AuNDs (a singlet oxygen generator). The MPCONPs are formed by assembling these components. FINDINGS MPCONPs, as nanoparticles camouflaged with tumor CM, have enhanced cellular uptake in cancer cells and improved the efficacy of photodynamic therapy (PDT) and chemotherapy (CT). This offers great potential for their use as individualized therapeutic agents for clinical oncology treatment.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yangliu Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lu Tang
- Breast Surgery Department, China- Japan Union hospital of Jilin University, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Dai J, Ouyang H, Wei S, Chen B, Dong X, Hu JJ, Wu M, Wang S, Xia F, Lou X. Cancer-Associated Fibroblast Mimetic AIE Probe for Precision Imaging-Guided Full-Cycle Management of Ovarian Cancer Surgery. Anal Chem 2023; 95:15068-15077. [PMID: 37767787 DOI: 10.1021/acs.analchem.3c03164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Fluorescence imaging can improve surgical accuracy in ovarian cancer, but a high signal-to-noise ratio is crucial for tiny metastatic cancers. Meanwhile, intraoperative fluorescent surgical navigation modalities alone are still insufficient to completely remove ovarian cancer lesions, and the recurrence rate remains high. Here, we constructed a cancer-associated fibroblasts (CAFs)-mimetic aggregation-induced emission (AIE) probe to enable full-cycle management of surgery that eliminates recurrence. AIE molecules (P3-PPh3) were packed in hollow mesoporous silica nanoparticles (HMSNs) to form HMSN-probe and then coated with a CAFs membrane to prepare CAF-probe. First, due to the negative potential of the CAF-probe, the circulation time in vivo is elevated, which facilitates passive tumor targeting. Second, the CAF-probe avoids its clearance by the immune system and improves the bioavailability. Finally, the fibronectin on the CAF-probe specifically binds to integrin α-5 (ITGA5), which is highly expressed in ovarian cancer cells, enabling fluorescence imaging with a contrast of up to 8.6. CAF-probe-based fluorescence imaging is used to evaluate the size and location of ovarian cancer before surgery (preoperative evaluation), to guide tumor removal during surgery (intraoperative navigation), and to monitor tumor recurrence after surgery (postoperative monitoring), ultimately significantly improving the efficiency of surgery and completely eliminating tumor recurrence. In conclusion, we constructed a CAFs mimetic AIE probe and established a full-cycle surgical management model based on its precise imaging properties, which significantly reduced the recurrence of ovarian cancer.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Hanzhi Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|