1
|
Chatterjee A, Sen S, Ramakanth D, Singh S, Maji PK. Unravelling polysilazanes: Synthesis, structure-property insights and versatile coating applications. Adv Colloid Interface Sci 2025; 342:103508. [PMID: 40233598 DOI: 10.1016/j.cis.2025.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/01/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
The continuous demand for high-performance protective and functional coatings in industrial structures and smart devices necessitates the development of advanced materials with enhanced properties. Polysilazanes, polymers composed of alternating silicon and nitrogen atoms, have emerged as versatile candidates in this realm. Their applications span a wide range of industries, including high-performance coatings, ceramic synthesis, composites, thermally resistant coatings, packaging materials, solar cells, and electromagnetic devices. This review presents a comprehensive analysis of the latest scientific and technological advancements in polysilazane-based coatings, focusing on the diverse applications and underlying mechanisms. Through systematic examination, the review explores various modifications to polysilazane structures and substrates to achieve desired properties, including the integration of functionalized chemicals and nanoparticles. The paper also outlines potential future research directions to further harness the capabilities of polysilazanes in advanced material science.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Sushmit Sen
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Dakuri Ramakanth
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India.
| |
Collapse
|
2
|
Huang Y, Zhang Z, Zhang B, Ma C, Zhang G. Self-Adaptive Zwitterionic Polysilazane Coatings with Mechanical Robustness, High Transparency, and Broad-Spectrum Antiadhesion Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413035. [PMID: 39703062 DOI: 10.1002/adma.202413035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Antiadhesive coatings have been extensively studied owing to their wide applications in biology, environment, and energy. However, developing a mechanically robust coating with broad-spectrum antiadhesion properties remains challenging. Herein, a novel strategy for preparing hard yet flexible and self-adaptive zwitterionic polysilazane coatings with broad-spectrum antiadhesion properties (anti-biofouling, anti-liquid adhesion, and anti-scaling) is proposed. The coatings are prepared by combining polysilazane with a telomer (FT) consisting of a low-surface-energy fluorine motif and hydrolysis-induced zwitterions. Before Si─OH generation in polysilazane, the fluorine motif drives the zwitterionic precursor to enrich on the surface, generating a zwitterionic layer following pre-hydrolysis. This unique design prevents the coatings from swelling in water, allowing them to adapt to diverse environments. The fluorine motif can orient toward the surface of air, providing anti-liquid adhesion capabilities, whereas the zwitterions orient underwater to endow anti-biofouling, anti-liquid adhesion, and anti-scaling capabilities. The highly cross-linked network toughened by FT contributes to the high hardness (up to 7H) and good flexibility of the coating. The chemical bonding between the coating and substrates ensures their strong adhesion (≈2.06-7.67 MPa). This study contributes to the design of mechanically robust broad-spectrum antiadhesive coatings applicable in marine industries, optical devices, pipeline transportation, and other fields.
Collapse
Affiliation(s)
- Yinjie Huang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhenqiang Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bin Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
3
|
You T, Guo G, Li W. Waterborne Liquid-like Coatings with High Transparency, Superior Scratch Resistance, and Antismudge Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43907-43917. [PMID: 39110772 DOI: 10.1021/acsami.4c06278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The aqueous formulation of antismudge coatings is a crucial step for environmental protection and pollution reduction. However, the inferior mechanical durability of waterborne antismudge coatings poses challenges for their practical application. Herein, we developed a fully waterborne antismudge coating with excellent scratch resistance by preparing hyperbranched amine-rich polysiloxane (HySPx) for antismudge ability and epoxy-rich zirconium-based aqueous solution (ZAS) for mechanical performance. The former is obtained by combining SPx, polydimethylsiloxane modified by 3-isocyanatopropyltriethoxysilane (IPTS), with 3-aminopropyltriethoxysilane (KH550), and the latter is synthesized using zirconium propoxide solution (TPOZ) with 3-glycidyloxypropyltrimethoxysilane (KH560). This report investigates the effects of the chain length and content of SPx on the performance of the coating. The results indicate that the coating exhibits optimal comprehensive performance when the molecular weight of polydimethylsiloxane is 4.5 kDa, and the mass fraction of SPx in HySPx is 1.5%. The coating possesses high transparency similar to glass, good adhesion (≈3 MPa) to various substrates, high hardness (8H), flexibility (2.5 mm bending radius), and exceptional antismudge property. More importantly, the coating can still maintain excellent antismudge property even after enduring 400 cycles of abrasion with steel wool. Furthermore, the rapid enrichment of polydimethylsiloxane on the coating surface endows the coating with excellent lubrication ability, allowing most common liquid stains to slide off the coating surface. Moreover, the rewritability of the coating remains stable even after writing traces that have persisted on its surface for several weeks. This coating is anticipated to be utilized for protecting foldable electronic screens, vehicles, and other fields.
Collapse
Affiliation(s)
- Tianlong You
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guixuan Guo
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wenbo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Gao X, Gao Y, Cao H, Zhang J. Eco-Friendly Sustainable and Responsive High-Performance Benzotriazole-Metal Organic Frameworks/Silica Composite Coating with Active/Passive Corrosion Protection on Copper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7639-7652. [PMID: 38552104 DOI: 10.1021/acs.langmuir.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Coatings with only passive protection cannot offer long-term anticorrosion on metals. Eco-friendly sustainable and responsive coating for active/passive corrosion protection is desirable to extend the service life of metals. Here, benzotriazole (BTA)-metal organic frameworks (Cu-MOFs, UiO-66) were embedded in silica (SiO2) coating by one-step electrodeposition on copper. Combined with passive capability of MOFs and active protection of BTA inhibitor, the composite coating (BTA-MOF/SiO2) exhibited high and stable corrosion resistance, confirmed by microstructure characterizations and electrochemical tests. As a result, the as-prepared composite coating exhibited superhydrophobicity with a water contact angle of 154.2°. With loading of BTA-MOF in SiO2 coating, the impedance modulus at 0.01 Hz increased by ∼10-fold and the corrosion current density decreased to 3.472 × 10-9 A·cm-2. Immersion and salt spray tests confirmed the long-term protection of the composite coating. The responsive release of BTA inhibitor endows the coating with a responsively anticorrosive behavior. The active-passive ability makes the coating a good candidate for protection on metals used in highly salty environments.
Collapse
Affiliation(s)
- Xu Gao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yan Gao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaijie Cao
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Junxi Zhang
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
5
|
Ghasemlou M, Oladzadabbasabadi N, Ivanova EP, Adhikari B, Barrow CJ. Engineered Sustainable Omniphobic Coatings to Control Liquid Spreading on Food-Contact Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15657-15686. [PMID: 38518221 DOI: 10.1021/acsami.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|