1
|
Yadav R, Kashyap D, Pitussi I, Gebru MG, Teller H, Schechter A, Kornweitz H. Trimetallic Alloys as an Electrocatalyst for Fuel Cells: The Case of Methyl Formate on Pt 3Pd 3Sn 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58573-58586. [PMID: 39415075 PMCID: PMC11533157 DOI: 10.1021/acsami.4c11282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The shift toward renewable energy sources plays a central role in the quest for a circular economy. In this context, methyl formate (MF) has garnered attention as a compelling hydrogen carrier and alternative fuel, because of its remarkable characteristics (energy density, ease of storage and transport, and low boiling point). In this study, DFT calculations supported by online electrochemical mass spectroscopy (OE-MS) were performed to investigate the MF electro-oxidation (MFEO) on Pt3Pd3Sn2 (111). The DFT calculations provide insight into the role of Pt, Pd, and Sn atoms in MFEO. Pt and Pd together provide a preferred active site for initiating MFEO through the O-H bond scission, and Sn plays an essential role in the mitigation of CO through oxygenation or water activation. By comparing the reaction energies and activation barriers for all possible reactions in MFEO, the suggested path necessitates a minimum energy of 0.14 eV to initiate the MFEO. This value was supported by the experimental results, showing that the oxidation wave of MF starts at 0.15 V (70 °C). Density functional theory (DFT) results, supported by OE-MS, indicate that the hydrolysis of MF prior to MFEO is not preferred on Pt3Pd3Sn2 (111) surfaces, although the formation of methanol is plausible via a CH3O intermediate. Among the three small organic molecules (SOMs) studied─MF, methanol, and formic acid─MF has the lowest activation energy for the initial bond breaking that starts the whole oxidation process (0.13 eV), compared to formic acid (0.45 eV) and methanol (0.61 eV); thus, MF is the preferred fuel on Pt3Pd3Sn2 (111).
Collapse
Affiliation(s)
| | - Diwakar Kashyap
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Itay Pitussi
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | | | - Hanan Teller
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Alex Schechter
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
- Research
and Development Centre for Renewable Energy, New Technology Centre, University of West Bohemia, 301 00 Pilsen, Czech Republic
| | - Haya Kornweitz
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
2
|
Singh M, Sharma HM, Gupta RK, Kumar A. Recent advancements and prospects in noble and non-noble electrocatalysts for materials methanol oxidation reactions. DISCOVER NANO 2024; 19:128. [PMID: 39143373 PMCID: PMC11324629 DOI: 10.1186/s11671-024-04066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
The direct methanol fuel cell (DMFC) represents a highly promising alternative power source for small electronics and automobiles due to its low operating temperatures, high efficiency, and energy density. The methanol oxidation process (MOR) constitutes a fundamental chemical reaction occurring at the positive electrode of a DMFC. Pt-based materials serve as widely utilized MOR electrocatalysts in DMFCs. Nevertheless, various challenges, such as sluggish reaction rates, high production costs primarily attributed to the expensive Pt-based catalyst, and the adverse effects of CO poisoning on the Pt catalysts, hinder the commercialization of DMFCs. Consequently, endeavors to identify an alternative catalyst to Pt-based catalysts that mitigate these drawbacks represent a critical focal point of DMFC research. In pursuit of this objective, researchers have developed diverse classes of MOR electrocatalysts, encompassing those derived from noble and non-noble metals. This review paper delves into the fundamental concept of MOR and its operational mechanisms, as well as the latest advancements in electrocatalysts derived from noble and non-noble metals, such as single-atom and molecule catalysts. Moreover, a comprehensive analysis of the constraints and prospects of MOR electrocatalysts, encompassing those based on noble metals and those based on non-noble metals, has been undertaken.
Collapse
Affiliation(s)
- Monika Singh
- Department of Chemistry, GLA University, Mathura-281406, India
| | | | - Ram K Gupta
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
- National Institute of Material Advancement, Pittsburg, KS, 66762, USA.
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura-281406, India.
- National Institute of Material Advancement, Pittsburg, KS, 66762, USA.
| |
Collapse
|
3
|
Cheng W, Sun C, Liu W, Wang Z. High-Entropy Alloy PtCuNiCoMn Nanoparticles on rGO for Electrooxidation of Methanol and Formic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2343-2351. [PMID: 38230630 DOI: 10.1021/acs.langmuir.3c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
High-entropy alloy (HEA) nanoparticles have attracted great attention due to their excellent electrocatalytic properties. Herein, PtCuNiCoMn HEA nanoparticles supported on reduced graphene oxide (rGO) are synthesized via a solvothermal co-reduction method and are used as an electrocatalyst for the electrooxidation of methanol and formic acid. Owing to the synergistic effect between the component metals, the high-entropy effect, and the sluggish diffusion effect, the PtCuNiCoMn HEA nanoparticles possess significantly improved electrocatalytic activity and stability compared to PtCuNiCo, PtCuNi, PtCu, Pt nanoparticles, and the commercial Pt/C catalyst. The results reveal the unique advantages of HEA nanoparticles in the field of electrocatalysis. The synthesis method is simple and effective, which may be valuable for the preparation of other HEA electrocatalysts.
Collapse
Affiliation(s)
- Wenting Cheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Chengrui Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Wen Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| |
Collapse
|
4
|
Wang S, Ma L, Song D, Yang S. Au Doping PtNi Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2855. [PMID: 37947700 PMCID: PMC10650142 DOI: 10.3390/nano13212855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
To boost the electrocatalytic methanol oxidation reaction (MOR) of Platinum (Pt), making binary PtM (M = transition metals, for example, Fe, Cu, and Ni) with specific morphology is known as a promising method. Although great progress has been made in the synthesis of shaped PtM catalysts toward MOR, enhancing the catalytic performance of the PtM to enable it to be commercialized is still a hotspot. In this work, the Au-doped PtNi dendritic nanoparticles (Au-PtNi DNPs) were obtained by doping a small amount of gold (Au) into initially prepared PtNi DNPs, greatly improving their MOR catalytic activity and durability. The energy-dispersive X-ray spectroscopy mapping (EDXS) indicates that the surface of DNPs is mainly composed of Au dopant and PtNi, while the core is mainly Pt, indicating the formation of Au-doped PtNi/Pt core-shell-like DNP structures. The electrocatalytic performance of the prepared Au-PtNi DNPs with different compositions for the MOR was evaluated using cyclic voltammetry, chronoamperometry, and CO-stripping tests. The experimental findings indicate that the Au-PtNi DNPs showed better MOR performance in comparison with PtNi DNPs and commercial Pt catalysts. Among all the catalysts, 6% Au-PtNi DNPs showed 4.3 times improved mass catalytic activity for the MOR in comparison with commercial Pt catalysts. In addition, all the prepared Au-PtNi DNPs display a remarkable CO tolerance compared to that of PtNi DNPs and commercial Pt catalysts. The dendritic structure of Au-PtNi DNPs can effectively enhance catalytic performance, combined with the electronic effect of Au, Pt, and Ni.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, No. 6 East Wenhui Road, Xianyang 712082, China; (L.M.); (D.S.)
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, No. 6 East Wenhui Road, Xianyang 712082, China; (L.M.); (D.S.)
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, No. 6 East Wenhui Road, Xianyang 712082, China; (L.M.); (D.S.)
| | - Shengchun Yang
- Ministry of Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China
- Shaanxi Collaborative Innovation Center for Hydrogen Fuel Cell Performance Improvement, Xi’an Jiaotong University, No. 28 West Xianning Road, Xi’an 710049, China
| |
Collapse
|
5
|
Wang S, Sheng T, Yuan Q. Low-Pt Octahedral PtCuCo Nanoalloys: "One Stone, Four Birds" for Oxygen Reduction and Methanol Oxidation Reactions. Inorg Chem 2023. [PMID: 37418587 DOI: 10.1021/acs.inorgchem.3c01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
To find a low-Pt electrocatalyst that is functionally integrated and superior to the state-of-the-art single-Pt electrocatalyst is expectedly a challenge. We have in this study found that the reactivity of the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR), in both acidic and alkaline electrolytes (viz., four half-cell reactions), can be modified and greatly enhanced by the electronic and/or synergistic effects of a low-Pt octahedral PtCuCo alloy. For the ORR, the mass activity (MA) of Pt0.23Cu0.64Co0.13/C in an acidic or alkaline electrolyte was 14.3 or 10.7 times that of the commercial Pt/C. For the MOR, the MA of Pt0.23Cu0.64Co0.13/C in an acidic or alkaline electrolyte was 7.2 or 3.4 times that of the commercial Pt/C. In addition, Pt0.23Cu0.64Co0.13/C exhibited an increased durability and CO tolerance, as compared with the commercial Pt/C. Density functional theory calculations demonstrated that the PtCuCo(111) surface can effectively optimize the O* binding energy. This work has successfully shown an example of how both acidic and alkaline ORR and MOR activities can be significantly synchronously enhanced.
Collapse
Affiliation(s)
- Shijun Wang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, People's Republic of China
| |
Collapse
|