1
|
Tang L, Huang Y, Wang Y, Zhao J, Lian H, Dong Y, Zhang Z, Hasebe Y. Highly stretchable, adhesive and conductive hydrogel for flexible and stable bioelectrocatalytic sensing layer of enzyme-based amperometric glucose biosensor. Bioelectrochemistry 2025; 163:108882. [PMID: 39671904 DOI: 10.1016/j.bioelechem.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Highly stretchable, adhesive and conductive triblock hydrogel was synthesized and utilized as a flexible and stable bioelectrocatalytic sensing layer of enzyme-based amperometric glucose biosensor. The hydrogel was prepared through one-pot polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid, methacrylamide, and hydroxyethyl methacrylate. The physical and chemical properties of the hydrogel were characterized with X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrochemical techniques. Glucose oxidase (GOx) and chitosan (CTS) embedded hydrogel was drop-coated on glassy carbon electrode (GCE) and screen printed graphite electrode (SPGE). The resulting GOx/CTS/hydrogel-GCE and GOx/CTS/hydrogel-SPGE exhibited excellent mediated bioelectrocatalytic oxidation current for glucose. The calibration curve of glucose by the GOx/CTS/hydrogel-GCE showed the linear range from 0.25 to 15 mM with the sensitivity of 27.0 µA mM-1 cm-2. This GOx/CTS/hydrogel-based sensing layer coated on the SPGE was stable against bending, and the response to glucose was almost same irrespective of the bending angles (0, 30, 60, and 90 degree). In addition, the response to glucose was not interfered by various organic and inorganic interfering species, allowed to detect glucose in goat serum. Furthermore, the GOx/CTS/hydrogel-GCE kept its original activity of 99.64 % during 30 days' storage under dry state in refrigerator.
Collapse
Affiliation(s)
- Linghui Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yufeng Huang
- School of International Education, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China.
| | - Jifan Zhao
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Huiyong Lian
- School of International Education, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yan Dong
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan.
| |
Collapse
|
2
|
Huang W, Zong J, Li M, Li TF, Pan S, Xiao Z. Challenges and Opportunities: Nanomaterials in Epilepsy Diagnosis. ACS NANO 2025. [PMID: 40266286 DOI: 10.1021/acsnano.5c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Epilepsy is a common neurological disorder characterized by a significant rate of disability. Accurate early diagnosis and precise localization of the epileptogenic zone are essential for timely intervention, seizure prevention, and personalized treatment. However, over 30% of patients with epilepsy exhibit negative results on electroencephalography and magnetic resonance imaging (MRI), which can lead to misdiagnosis and subsequent delays in treatment. Consequently, enhancing diagnostic methodologies is imperative for effective epilepsy management. The integration of nanomaterials with biomedicine has led to the development of diagnostic tools for epilepsy. Key advancements include nanomaterial-enhanced neural electrodes, contrast agents, and biochemical sensors. Nanomaterials improve the quality of electrophysiological signals and broaden the detection range of electrodes. In imaging, functionalized magnetic nanoparticles enhance MRI sensitivity, facilitating localization of the epileptogenic zone. NIR-II nanoprobes enable tracking of seizure-related biomarkers with deep tissue penetration. Furthermore, nanomaterials enhance the sensitivity of biochemical sensors for detecting epilepsy biomarkers, which is crucial for early detection. These advancements significantly increase diagnostic sensitivity and specificity. However, challenges remain, particularly regarding biosafety, quality control, and the scalability of fabrication processes. Overcoming these obstacles is essential for successful clinical translation. Artificial-intelligence-based big data analytics can facilitate the development of diagnostic tools by screening nanomaterials with specific properties. This approach may help to address current limitations and improve both effectiveness and safety. This review explores the application of nanomaterials in the diagnosis and detection of epilepsy, with the objective of inspiring innovative ideas and strategies to enhance diagnostic effectiveness.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Wang Y, Liu C, Zhao W, Wang Q, Sun X, Zhang S. Biosensors and Biomarkers for the Detection of Motion Sickness. Adv Healthc Mater 2025; 14:e2403606. [PMID: 39901439 DOI: 10.1002/adhm.202403606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Motion sickness (MS) is a prevalent syndrome that predominantly occurs during transportation and virtual reality (VR). The absence of reliable indicators and detection methods makes precise diagnosis difficult. Biomarker concentrations and trends may imply individual susceptibility, symptom classification, and the specific progression of MS. It is therefore essential to explore biosensors capable of providing sensitive, accurate, and real-time monitoring of biomarkers. This review provides a summary of the pathogenesis and biological pathways underlying MS, followed by an examination of biomarkers and their research progress. The most recent electrochemical biosensors developed for the non-invasive detection of representative biomarkers (e.g., cortisol, α-amylase, and estrogen) are comprehensively summarized. The effectiveness of these biosensors in practical application is discussed. It is anticipated that electrochemical biosensors can be gradually improved from the sampling methods, multimodal combinations, and data processing, which can facilitate the detection of MS toward individuation, refinement, and intelligence.
Collapse
Affiliation(s)
- Yanbing Wang
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
| | - Chen Liu
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Qingfeng Wang
- Nottingham University Business School China, University of Nottingham, Ningbo, Zhejiang, 315100, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham, Ningbo, 315100, China
| | - Sheng Zhang
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315100, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Wang S, Zhai H, Zhang Q, Hu X, Li Y, Xiong X, Ma R, Wang J, Chang Y, Wu L. Trends in Flexible Sensing Technology in Smart Wearable Mechanisms-Materials-Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:298. [PMID: 39997861 PMCID: PMC11858378 DOI: 10.3390/nano15040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Flexible sensors are revolutionizing our lives as a key component of intelligent wearables. Their pliability, stretchability, and diverse designs enable foldable and portable devices while enhancing comfort and convenience. Advances in materials science have provided numerous options for creating flexible sensors. The core of their application in areas like electronic skin, health medical monitoring, motion monitoring, and human-computer interaction is selecting materials that optimize sensor performance in weight, elasticity, comfort, and flexibility. This article focuses on flexible sensors, analyzing their "sensing mechanisms-materials-applications" framework. It explores their development trajectory, material characteristics, and contributions in various domains such as electronic skin, health medical monitoring, and human-computer interaction. The article concludes by summarizing current research achievements and discussing future challenges and opportunities. Flexible sensors are expected to continue expanding into new fields, driving the evolution of smart wearables and contributing to the intelligent development of society.
Collapse
Affiliation(s)
- Sen Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Haorui Zhai
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Qiang Zhang
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Xueling Hu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yujiao Li
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Xin Xiong
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Ruhong Ma
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Jianlei Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ying Chang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Lixin Wu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
5
|
Tian Y, Wang J, Chen H, Lin H, Wu S, Zhang Y, Tian M, Meng J, Saeed W, Liu W, Chen X. Electrospun multifunctional nanofibers for advanced wearable sensors. Talanta 2025; 283:127085. [PMID: 39490308 DOI: 10.1016/j.talanta.2024.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The multifunctional extension of fiber-based wearable sensors determines their integration and sustainable development, with electrospinning technology providing reliable, efficient, and scalable support for fabricating these sensors. Despite numerous studies on electrospun fiber-based wearable sensors, further attention is needed to leverage composite structural engineering for functionalizing electrospun fibers. This paper systematically reviews the research progress on fiber-based multifunctional wearable sensors in terms of design concept, device fabrication, mechanism exploration, and application potential. Firstly, the basics of electrospinning are briefly introduced, including its development, principles, parameters, and material selection. Tactile sensors, as crucial components of wearable sensors, are discussed in detail, encompassing their performance parameters, transduction mechanisms, and preparation strategies for pressure, strain, temperature, humidity, and bioelectrical signal sensors. The main focus of the article is on the latest research progress in multifunctional sensing design concepts, multimodal decoupling mechanisms, sensing mechanisms, and functional extensions. These extensions include multimodal sensing, self-healing, energy harvesting, personal thermal management, EMI shielding, antimicrobial properties, and other capabilities. Furthermore, the review assesses existing challenges and outlines future developments for multifunctional wearable sensors, highlighting the need for continued research and innovation.
Collapse
Affiliation(s)
- Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junhao Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haojie Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haibin Lin
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Shulei Wu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yifan Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Meng Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jiaqi Meng
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Waqas Saeed
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Xing Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
6
|
Qin J, Tang Y, Zeng Y, Liu X, Tang D. Recent advances in flexible sensors: From sensing materials to detection modes. Trends Analyt Chem 2024; 181:118027. [DOI: 10.1016/j.trac.2024.118027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
7
|
Li J, Fang Z, Wei D, Liu Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv Healthc Mater 2024; 13:e2401532. [PMID: 39285808 DOI: 10.1002/adhm.202401532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Indexed: 12/18/2024]
Abstract
The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhengping Fang
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
8
|
Wu Z, Zhao Y, Duo Y, Li B, Li L, Chen B, Yang K, Su S, Guan J, Wen L, Liu M. Silk Flocked Flexible Sensor Capable of Wide-Range and Sensitive Pressure Perception. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64222-64232. [PMID: 39522059 DOI: 10.1021/acsami.4c13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In recent years, there have been advancements in high-performance soft sensors with simultaneous moderate sensitivity and wide linearity. However, it remains challenging to combine high-efficiency production and high performance for soft sensors. The skin and hair structure provide an elegantly simple sensing model, where hair acts as signal receptors and basal skin acts as signal processors. Herein, we used efficient electrostatic flocking and extrusion printing to engineer comb-shaped electrodes with conductive polydimethylsiloxane (PDMS) flocked with conductive silk fibers as a biomimetic flexible sensor. The mechanical and electrical properties of modified PDMS and silk fibers were characterized to optimize the functionalization process. The sensor unit exhibited a high linear range up to 2,000 kPa and a competitively good sensitivity of 0.0285 kPa-1 in the contact mode with conductive materials, as well as good resolution in the noncontact mode. Such sensors and a sensor array demonstrated potential applications for detecting pressure disturbances from acoustic activity and for human-robot interactions. We anticipate that the straightforward design and facile fabrication of soft sensors with vertical fibrous morphology for perception will open new avenues for the next generation of high-performance soft sensors integrated with artificial intelligence.
Collapse
Affiliation(s)
- Zihong Wu
- Intl. Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yan Zhao
- Intl. Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Institute of Thermodynamics, Technical University of Munich, Munich 80333, Germany
| | - Youning Duo
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Baifan Li
- Intl. Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Lei Li
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Bohan Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Kang Yang
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China
| | - Siwei Su
- Oxford Instruments, Shanghai 200233, China
| | - Juan Guan
- Intl. Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100083, China
| |
Collapse
|
9
|
Tian X, Cheng G, Wu Z, Wen X, Kong Y, Long P, Zhao F, Li Z, Zhang D, Hu Y, Wei D. High‐Resolution Carbon‐Based Tactile Sensor Array for Dynamic Pulse Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202406022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 09/14/2024]
Abstract
AbstractWith the development of modern medicine, the importance of continuous and reliable pulse wave monitoring has increased significantly in physiological evaluation and disease diagnosis. Among them, the 3D reconstruction of the pulse wave is indispensable, and needs rely on ultra‐high resolution sensor arrays, that is, high spatial resolution, temporal resolution, and force resolution. Herein, a flexible high‐density 32 × 32 tactile sensor array based on pressure‐sensitive tunneling mechanism is develpoed. Conformal graphene nanowalls (GNWs) pattern arrays are deposited on micro‐pyramidal structural Si substrate via mask‐assisted plasma enhanced chemical vapor deposition (PECVD) method and are adopted as pressure‐sensitive electrode, exhibiting a spatial resolution of 64 dots/cm2, high sensitivity (222.36 kPa−1) and short response time (2 ms). More importantly, HfO2 tunneling layer can effectively suppress noise current, which made it sense weak pressure signals with 1/1000 force resolution and SNR of 36.32 dB. By leveraging its high‐resolution array, more holistic pulse signals are acquired and the 3D shape of the pulse wave are successfully replicated. This work shows high‐resolution sensors have significant promise for applications in remote intelligent diagnostics.
Collapse
Affiliation(s)
- Xin Tian
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
| | - Guanyin Cheng
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
| | - Zhonghuai Wu
- The MIIT Key Laboratory of Complex‐Field Intelligent Exploration School of Optics and Photonics Beijing Institute of Technology Beijing 100081 China
| | - Xudong Wen
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Yongkang Kong
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
| | - Pan Long
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Fubang Zhao
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
| | - Zhongxiang Li
- The MIIT Key Laboratory of Complex‐Field Intelligent Exploration School of Optics and Photonics Beijing Institute of Technology Beijing 100081 China
| | - Dong Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences Beijing 100091 China
| | - Yonghe Hu
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Dapeng Wei
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
- State Key Laboratory of Trauma and Chemical Poisoning Third Military Medical University Chongqing 400042 China
| |
Collapse
|
10
|
Xia M, Shi Q. Topic Editorial on Flexible Electronics. MICROMACHINES 2024; 15:1350. [PMID: 39597162 PMCID: PMC11596822 DOI: 10.3390/mi15111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Fields such as the Internet of Things (IoT), smart healthcare, and intelligent manufacturing are at the forefront of technological advancement, involving the extensive deployment of numerous sophisticated electronic systems and devices [...].
Collapse
Affiliation(s)
| | - Qiongfeng Shi
- Interdisciplinary Research Center, School of Electronic Science and Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
11
|
Cinca-Morros S, Garcia-Rey S, Álvarez-Herms J, Basabe-Desmonts L, Benito-Lopez F. A physiological perspective of the relevance of sweat biomarkers and their detection by wearable microfluidic technology: A review. Anal Chim Acta 2024; 1327:342988. [PMID: 39266058 DOI: 10.1016/j.aca.2024.342988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/14/2024]
Abstract
The great majority of published microfluidic wearable platforms for sweat sensing focus on the development of the technology to fabricate the device, the integration of sensing materials and actuators and the fluidics of sweat within the device. However, very few papers have discussed the physiological relevance of the metabolites measured using these novel approaches. In fact, some of the analytes present in sweat, which serve as biomarkers in blood, do not show a correlation with blood levels. This discrepancy can be attributed to factors such as contamination during measurements, the metabolism of sweat glands, or challenges in obtaining significant samples. The objective of this review is to present a critical and meaningful insight into the real applicability and potential use of wearable technology for improving health and sport performance. It also discusses the current limitations and future challenges of microfluidics, aiming to provide accurate information about the actual needs in this field. This work is expected to contribute to the future development of more suitable wearable microfluidic technology for health and sports science monitoring, using sweat as the biofluid for analysis.
Collapse
Affiliation(s)
- Sergi Cinca-Morros
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Sandra Garcia-Rey
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jesús Álvarez-Herms
- Research Group in Sports Genomics, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain; PHYMOlab Research & Exercise Performance, Segovia, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013 Bilbao, Spain.
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain.
| |
Collapse
|
12
|
Cao J, Yuan X, Zhang Y, Wang Q, He Q, Guo S, Ren X. Ultrasensitive Flexible Strain Sensor Made with Carboxymethyl-Cellulose-Anchored Carbon Nanotubes/MXene for Machine-Learning-Assisted Handwriting Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51447-51458. [PMID: 39276126 DOI: 10.1021/acsami.4c09786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The combination of wearable sensors with machine learning enables intelligent perception in human-machine interaction and healthcare, but achieving high sensitivity and a wide working range in flexible strain sensors for signal acquisition and accurate recognition remains challenging. Herein, we introduced carboxymethyl cellulose (CMC) into a carbon nanotubes (CNTs)/MXene hybrid network, forming tight anchoring among the conductive materials and, thus, bringing enhanced interaction. The silicone-rubber-encapsulated CMC-anchored CNTs/MXene (CCM) strain sensor exhibits an excellent sensitivity (maximum gauge factor up to 71 294), wide working range (200%), ultralow detection limit (0.05%), and outstanding durability (over 10 000 cycles), which is superior to most of the recently reported counterparts also based on a conductive composite film. Moreover, the sensor achieves seamless integration with human skin with the help of a poly(acrylic acid) adhesive layer, successfully obtaining stable and clear waveforms with meaningful profiles from the human body. On this basis, we proposed and realized a novel in-air handwriting recognition method via extracting multiple features of high-quality strain signals assisted by deep neural networks, achieving a high classification accuracy of 98.00 and 94.85% for Arabic numerals and letters, respectively. Our work provides an effective approach for significantly improving strain sensing performance, thereby facilitating innovative applications of flexible sensors.
Collapse
Affiliation(s)
- Junming Cao
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xueguang Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yangan Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi He
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Shaohua Guo
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
13
|
Yan T, Weng F, Ming Y, Zhu S, Zhu M, Wang C, Guo C, Zhu K. Luminescence Probes in Bio-Applications: From Principle to Practice. BIOSENSORS 2024; 14:333. [PMID: 39056609 PMCID: PMC11274413 DOI: 10.3390/bios14070333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Bioanalysis based on optical imaging has gained significant progress in the last few decades. Luminescence probes are capable of detecting, monitoring, and tracing particular biomolecules in complex biological systems to figure out the roles of these molecules in organisms. Considering the rapid development of luminescence probes for bio-applications and their promising future, we have attempted to explore the working principles and recent advances in bio-applications of luminescence probes, in the hope of helping readers gain a detailed understanding of luminescence probes developed in recent years. In this review, we first focus on the current widely used luminescence probes, including fluorescence probes, bioluminescence probes, chemiluminescence probes, afterglow probes, photoacoustic probes, and Cerenkov luminescence probes. The working principles for each type of luminescence probe are concisely described and the bio-application of the luminescence probes is summarized by category, including metal ions detection, secretion detection, imaging, and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Kai Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| |
Collapse
|
14
|
Zinno C, Agnesi F, D'Alesio G, Dushpanova A, Brogi L, Camboni D, Bernini F, Terlizzi D, Casieri V, Gabisonia K, Alibrandi L, Grigoratos C, Magomajew J, Aquaro GD, Schmitt S, Detemple P, Oddo CM, Lionetti V, Micera S. Implementation of an epicardial implantable MEMS sensor for continuous and real-time postoperative assessment of left ventricular activity in adult minipigs over a short- and long-term period. APL Bioeng 2024; 8:026102. [PMID: 38633836 PMCID: PMC11023704 DOI: 10.1063/5.0169207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
The sensing of left ventricular (LV) activity is fundamental in the diagnosis and monitoring of cardiovascular health in high-risk patients after cardiac surgery to achieve better short- and long-term outcome. Conventional approaches rely on noninvasive measurements even if, in the latest years, invasive microelectromechanical systems (MEMS) sensors have emerged as a valuable approach for precise and continuous monitoring of cardiac activity. The main challenges in designing cardiac MEMS sensors are represented by miniaturization, biocompatibility, and long-term stability. Here, we present a MEMS piezoresistive cardiac sensor capable of continuous monitoring of LV activity over time following epicardial implantation with a pericardial patch graft in adult minipigs. In acute and chronic scenarios, the sensor was able to compute heart rate with a root mean square error lower than 2 BPM. Early after up to 1 month of implantation, the device was able to record the heart activity during the most important phases of the cardiac cycle (systole and diastole peaks). The sensor signal waveform, in addition, closely reflected the typical waveforms of pressure signal obtained via intraventricular catheters, offering a safer alternative to heart catheterization. Furthermore, histological analysis of the LV implantation site following sensor retrieval revealed no evidence of myocardial fibrosis. Our results suggest that the epicardial LV implantation of an MEMS sensor is a suitable and reliable approach for direct continuous monitoring of cardiac activity. This work envisions the use of this sensor as a cardiac sensing device in closed-loop applications for patients undergoing heart surgery.
Collapse
Affiliation(s)
- C. Zinno
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - F. Agnesi
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - G. D'Alesio
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - L. Brogi
- Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - D. Camboni
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - F. Bernini
- BioMedLab, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - D. Terlizzi
- Fondazione Toscana “G. Monasterio,” Pisa, Italy
| | - V. Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - K. Gabisonia
- BioMedLab, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - L. Alibrandi
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - J. Magomajew
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | | | - S. Schmitt
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | - P. Detemple
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | - C. M. Oddo
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - S. Micera
- Author to whom correspondence should be addressed:
| |
Collapse
|
15
|
Zhao YC, Xu W, Chen HY, Guo WC, Fang Y, Sheng XJ. High-Performance Dual-Responsive Sensing Skin Enabled by Bioinspired Transduction of Coplanar Square-Loop Electrodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55163-55173. [PMID: 37967306 DOI: 10.1021/acsami.3c14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Advancements in intelligent robots and human-machine interaction necessitate a shift in artificial skins toward multimodal perception. Dual-responsive skins that can detect proximity and pressure information are significant to establishing continuous sensing of interaction processes and extending interactive application scenarios. To address the current limitations of inadequate dual-mode performance, such as limited proximal response change and low tactile sensitivity, this paper presents a bioinspired complementary gradient architecture-enabled (CGA) transduction design and a high-performance dual-responsive skin based on coplanar square-loop electrodes. Through systematic investigation into the transduction of various electrode configurations, comparative results reveal the remarkable potential of coplanar electrodes to deliver superior dual-mode performance without compromise. Simulations and experiments prove that the proposed CGA response mechanism can capture local interface deformation and overall compression signals, further enhancing response sensitivity. The final developed artificial skin is sensitive to external pressure and the approach of objects simultaneously, exhibiting a long detection distance (∼40 mm), a high proximity response (>0.4), and outstanding touch sensitivity (0.131 kPa-1). Furthermore, we demonstrate proof-of-concept applications for the proposed sensing skin in a dual-mode teleoperation interface and adaptive grasping interactions.
Collapse
Affiliation(s)
- Yan C Zhao
- The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Xu
- The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Y Chen
- The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei C Guo
- The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Fang
- The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin J Sheng
- The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Wu S, Yang C, Hu J, Pan M, Meng W, Liu Y, Li P, Peng J, Zhang Q, Chen P, Wang H. Normal-Direction Graded Hemispheres for Ionic Flexible Sensors with a Record-High Linearity in a Wide Working Range. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47733-47744. [PMID: 37782111 DOI: 10.1021/acsami.3c09580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Flexible pressure sensors developed rapidly with increased sensitivity, a fast response time, high stability, and excellent deformability. These progresses have expanded the application of wearable electronics under high-pressure backgrounds while also bringing new challenges. In particular, the nonlinearity and narrow working range lead to a gradually insensitive response, principally because the microstructure deforms inconsistently on the device interfaces in the whole working range. Herein, we report an ionic flexible sensor with a record-high linearity (R2 = 0.99994) in a wide working range (up to 600 kPa). The linearity response comes from the normal-direction graded hemisphere (GH) microstructure. It is prepared from poly(dimethylsiloxane) (PDMS)/carbon nanotubes (CNTs)/Au into flexible and deformable electrodes, and its geometry is precisely designed from the linear elastic theory and optimized through finite element simulation. The sensor can achieve a high sensitivity of S = 165.5 kPa-1, a response-relaxation time of <30 ms, and superb consistency, allowing the device to detect vibration signals. Our sensor has been assembled with circuits and capsulation in order to monitor the function state of players in underwater sports in the frequency domain. This work deepens the theory of linearized design of microstructures and provides a strategy to make flexible pressure sensors that have combined the performances of ultrahigh linearity, high sensitivity, and a wide working range.
Collapse
Affiliation(s)
- Shaowei Wu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Chengxiu Yang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Jiafei Hu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Mengchun Pan
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Weize Meng
- State Key Laboratory of CEMEE, College of Electronic Science and Technology, National University of Defense Technology, Deya Road 109, Changsha 410073, China
| | - Yan Liu
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Peisen Li
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Junping Peng
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Qi Zhang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Pengteng Chen
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| | - Haomiao Wang
- College of Intelligence Science and Technology, National University of Defense Technology (NUDT), Deya Road 109, Changsha 410073, China
| |
Collapse
|