1
|
Fu Y, Wang X, Feng W, Ding Z, Feng X, Wu X, Zhou P, Yu F, Zhou J, Zhuo S. Modulation of the structure and morphology of NiCo 2S 4 by varying the anion types of nickel and cobalt salts to achieve high-rate supercapacitive performance. J Colloid Interface Sci 2025; 687:197-206. [PMID: 39952111 DOI: 10.1016/j.jcis.2025.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
In this work, the structure and morphology of NiCo2S4 (NCS) were modulated by varying the anion types (Cl-, CH3COO-, and NO3-) of nickel and cobalt salts. Extensive material characterization and analyses revealed that the grain size of the obtained NCSs was determined by different solvation free energies, capping effects, and steric hindrance during the crystal growth process. Among these three anions, Cl-, with the smallest ionic size, exhibited the lowest capping effect, steric hindrance, and solvation free energy, leading to the largest average grain size of 15.34 nm for Cl--based NiCo2S4 (NCS-C). Moreover, the sea urchin-like morphology of NCS-C provided a high reaction interface for electrochemical energy storage. As a result, the specific capacitance of NCS-C could reach 1112.4 F/g at a current density of 6 A/g, retaining 692 F/g even at a high current density of 16 A/g. The assembled asymmetric supercapacitor could also deliver a high energy density of 23.4 Wh kg-1. This work highlights the significant influence of anion type on the structural and morphological evolution of NCS materials, providing new insights for the development of high-rate NCS-based electrode materials.
Collapse
Affiliation(s)
- Yuanzhe Fu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China
| | - Wei Feng
- Shandong Qilu Keli Chemical Institute Co., Ltd., Zibo 255086 China
| | - Zewen Ding
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China
| | - Xiang Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China
| | - Xiaozhong Wu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China.
| | - Pengfei Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China
| | - Fangyong Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049 China.
| |
Collapse
|
2
|
Liu J, Liu C, Qiu X, Zhang T, Gao S, Song X, Chen F. CeF 3-Accelerated surface reconstruction of MoO 2 nanosheets into coral-like CeF 3/MoO 2 composites enhances the oxygen evolution reaction for efficient water splitting. J Colloid Interface Sci 2025; 683:1057-1066. [PMID: 39764989 DOI: 10.1016/j.jcis.2024.12.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF3/MoO2 heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF3/MoO2 heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities. The prepared coral-like CeF3/MoO2/CSF catalyst achieves overpotentials as low as 29 mV and 210 mV for hydrogen evolution reaction and oxygen evolution reaction at 10 mA cm-2 current density, respectively. Notably, the CeF3/MoO2@CSF||CeF3/MoO2@CSF electrolyzer demonstrates a superior overall water splitting ability having a voltage of 1.53 V at 10 mA cm-2 and retains outstanding stability for 100 h operating in 1.0 M KOH electrolyte. The exceptional catalytic performance of CeF3/MoO2@CSF is attributed to the reduction in the water dissociation energy barrier, optimal adsorption/desorption behavior of H/O intermediates, and rapid mass transfer facilitated by the multistage porous channels. These findings, supported by experimental results and density functional theory (DFT) calculations, provide a novel approach for designing rare-earth metal heterojunctions and biomass-derived synergistic electrocatalysts for efficient water splitting.
Collapse
Affiliation(s)
- Jia Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, China
| | - Chenglin Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianglin Qiu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianshuo Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shanshan Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaoming Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fushan Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
3
|
Moorthi K, Padaki M, Mohan S. Insights into the Morphological Effects of 1D, 2D, and 3D CoV-Layered Double Hydroxides on Their Electrochemical Performance in Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3922-3937. [PMID: 39912679 DOI: 10.1021/acs.langmuir.4c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
In this study, bimetallic cobalt-vanadium-based layered double hydroxide (CoV-LDH) systems were developed by varying the Co/V molar ratios (1:1 and 2:1) and hydrothermal temperatures (120 and 180 °C). Structural analysis by X-ray diffraction (XRD), Raman, and Fourier-transform infrared (FTIR) spectroscopy indicated the successful formation of CoV-LDH with a unique structure and lattice distortions, reflecting the influence of both the metal concentrations and temperature on the crystal and chemical structures of the developed bimetallic systems. Similarly, the field-emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images revealed a flaky 2D nanosheet-like structure for the bimetallic CoV-LDH with a 1:1 ratio prepared at 120 °C (CVL1-120), whereas one-dimensional (1D) and three-dimensional (3D) morphologies were observed for other bimetallic CoV-LDH systems prepared with a different molar ratio (2:1) and/or temperature (180 °C). Electrochemical analysis performed in a three-electrode setup demonstrated a specific capacitance of 314.4 F g-1 at 1 A g-1 current density for CVL1-120, which is ∼4.5 and 5.2 times higher than those of monometallic Co and V-LDH, respectively. In addition, CVL1-120 exhibited an excellent capacitance retention of ∼97% over 5000 charge-discharge cycles with 100% Coulombic efficiency at 10 A g-1. Furthermore, the developed asymmetric device delivered an energy density of 36.5 Wh kg-1 and a power density of 1208.2 W kg-1. This enhanced performance of CVL1-120 was attributed to its two-dimensional (2D) flaky structures, with rich intercalated ions serving as electroactive sites, facilitating enhanced charge storage efficiency and improved stability, making it suitable as an electrode material for sustainable supercapacitors.
Collapse
Affiliation(s)
- Kanmani Moorthi
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - Mahesh Padaki
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - Sakar Mohan
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| |
Collapse
|
4
|
Jafari S, Shaghaghi Z. Engineering active sites in ternary CeO 2-CuO-Mn 3O 4 heterointerface embedded in reduced graphene oxide for boosting water splitting activity. Sci Rep 2025; 15:4145. [PMID: 39901003 PMCID: PMC11791208 DOI: 10.1038/s41598-025-87423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
The rational design of highly efficient and stable bifunctional catalysts for overall water splitting is vitally important. In this study, to increase the active catalytic sites of CeO2 for electrochemical water splitting, a ternary CeO2-CuO-Mn3O4 heterostructure, synthesized by coprecipitation method, is loaded on reduced graphene oxide (rGO) nanosheets in different amounts to produce CeO2-CuO-Mn3O4@rGO nanocomposites. It is found that CeO2-CuO-Mn3O4@rGO nanocomposites show higher electrocatalytic activity than unsupported samples, and the best activity is observed when the wieght ratio of CeO2-CuO-Mn3O4 is three times that of rGO. The CeO2-CuO-Mn3O4@rGO(3:1) requires low overpotentials of 130 and 270 mV for hydrogen and oxygen evolution reactions (HER and OER) at a current density of 10 mA cm-2. Furthermore, this material demonstrates a large electrochemically active surface area, low charge transfer resistance, suitable kintics, and high long-term stability for both OER and HER. Additionally, when CeO2-CuO-Mn3O4@rGO(3:1) is used as self-supported electrodes for the overall water splitting reaction, a low cell voltage of 1.68 V is obtained. This superior performance is due to: (i) active multi-metal sites that produce strong synergistic effects; (ii) the high conductivity of rGO, which faciliate favorable electron transfer; and (iii) the homogenous anchoring of CeO2-CuO-Mn3O4 on rGO, which increases the number of active sites available on the catalyst surface.
Collapse
Affiliation(s)
- Sahar Jafari
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran.
| |
Collapse
|
5
|
Nitika, Dutta RK. Partial Selenization Strategy for Fabrication of Ni 0.85Se@NiCr-LDH Heterostructure as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407538. [PMID: 39538999 DOI: 10.1002/smll.202407538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
NiCr-LDH and its partial selenization as Ni0.85Se@NiCr-LDH heterostructure is established here as an alkaline water electrolyzer for achieving enhanced overall water splitting efficiency. The hydrothermally synthesized optimized batch of Ni0.85Se@NiCr-LDH is thoroughly characterized to elucidate its structure, morphology, and composition. Compared to pristine NiCr-LDH, the batch of Ni0.85Se@NiCr-LDH exhibits exceptional alkaline OER and HER activity with low overpotentials of 258 and 85 mV at 10 mA cm-2, respectively. Besides, Ni0.85Se@NiCr-LDH also exhibits excellent acidic HER with an overpotential of only 61 mV at 10 mA cm-2, indicating that Ni0.85Se@NiCr-LDH can operate effectively across a wide pH range. The excellent electrochemical stability of Ni0.85Se@NiCr-LDH for 24 h operation is attributed to the formation of a thin layer of SeOx during OER operation. The role of selenization and the effect of Cr in the LDH lattice toward enhanced electrocatalytic water splitting is discussed. The outstanding OER and HER performances of Ni0.85Se@NiCr-LDH are attributed to the higher electrochemical active surface area, favorable conditions for adsorption of HER/OER intermediates, low charge transfer resistance, and improved conductivity. The practical application of Ni0.85Se@NiCr-LDH as a bifunctional electrocatalyst for overall water splitting is reflected from the low cell voltage of 1.548 V at 10 mA cm-2.
Collapse
Affiliation(s)
- Nitika
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - R K Dutta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
6
|
Wu Q, Li F, Sheng H, Qi Y, Yuan J, Bi H, Li W, Xie E, Lan W. In Situ Fabrication of Hierarchical CuO@CoNi-LDH Composite Structures for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669688 DOI: 10.1021/acsami.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Layered double hydroxide (LDH) materials, despite their high theoretical capacity, exhibit significant performance degradation with increasing load due to their low conductivity. Simultaneously achieving both high capacity and high rate performance is challenging. Herein, we fabricated vertically aligned CuO nanowires in situ on the copper foam (CF) substrate by alkali-etching combined with the annealing process. Using this as a skeleton, electrochemical deposition technology was used to grow the amorphous α-phase CoNi-LDH nanosheets on its surface. Thanks to the high specific surface area of the CuO skeleton, ultrahigh loading (̃16.36 mg cm-2) was obtained in the fabricated CF/CuO@CoNi-LDH electrode with the cactus-like hierarchical structure, which enhanced the charge transfer and ion diffusion dynamics. The CF/CuO@CoNi-LDH electrode achieved a good combination of high areal capacitance (33.5 F cm-2) and high rate performance (61% capacitance retention as the current density increases 50 times). The assembled asymmetric supercapacitor device demonstrated a maximum potential window of 0-1.6 V and an energy density of 1.7 mWh cm-2 at a power density of 4 mW cm-2. This work provides a feasible strategy for the design and fabrication of high-mass-loading LDH composites for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Qiyuan Wu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Fengfeng Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yifeng Qi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
| | - Huasheng Bi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
7
|
Singha Roy S, Madhu R, Bera K, Nagappan S, Dhandapani HN, De A, Kundu S. Tuning the Activity and Stability of CoCr-LDH by Forming a Heterostructure on Surface-Oxidized Nickel Foam for Enhanced Water-Splitting Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5965-5976. [PMID: 38263906 DOI: 10.1021/acsami.3c17540] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The development of low-cost, efficient catalysts for electrocatalytic water splitting to generate green hydrogen is a hot topic among researchers. Herein, we have developed a highly efficient heterostructure of CoCr-LDH on NiO on nickel foam (NF) for the first time. The preparation strategy follows the simple annealing of a cleaned NF without using any Ni salt precursor, followed by the growth of CoCr-LDH nanosheets over the surface-oxidized NF. The CoCr-LDH/NiO/NF catalyst shows excellent electrocatalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in a 1 M KOH solution. For OER, only 253 mV and for HER, only 185 mV overpotentials are required to attain a 50 mA cm-2 current density. Also, the long-term stability of both the OER and HER for 60 h proves its robustness. The turnover frequency value for the OER increased 1.85 times after the heterostructure formation compared to bare CoCr-LDH. The calculated Faradaic efficiency values of 97.4 and 94.75% for the OER and HER revealed the high intrinsic activity of the heterostructure. Moreover, the heterostructure only needs 1.57 V of cell voltage when acting as both the anode and the cathode to achieve a 10 mA cm-2 current density. The long-term stability of 60 h for the total water-splitting process proves its excellent performance. Several systematic pre- and post-experiment characterizations prove its durable nature. These excellent OER and HER activities and stabilities are attributed to the surface-modified electronic structure and thin nanosheet-like surface morphology of the heterostructure. The thin, wide, and modified surface of the catalyst facilitates the diffusion of ions (reactants) and gas molecules (products) at the electrode/electrolyte interface. Furthermore, electron transfer from n-type CoCr-LDH to p-type NiO results in enhanced electronic conductivity. This study demonstates the effective design of a self-supported heterostructure with minimal synthetic steps to generate a bifunctional electrocatalyst for water splitting, contributing to the greater cause of green hydrogen economy.
Collapse
Affiliation(s)
- Suprobhat Singha Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Aditi De
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| |
Collapse
|
8
|
Liang Y, Zhao X, Yan P, Xue L, Li H, Gu L, Long Y, Yu T, Yang Y. Crystalline Ni 5P 4/amorphous CePO 4 core/shell heterostructure arrays for highly-efficient electrocatalytic overall water splitting. J Colloid Interface Sci 2024; 655:565-575. [PMID: 37952460 DOI: 10.1016/j.jcis.2023.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Exploring low-cost and highly efficient bifunctional electrocatalysts for overall water splitting has become a research focus recently. Crystalline/amorphous core/shell heterostructures have great potential for applications in the field of electrocatalytic overall water splitting. However, related research is still challenging. Herein, crystalline Ni5P4 nanosheets/amorphous CePO4 nanocrystals core/shell heterostructure arrays were developed for electrocatalytic overall water splitting. It is shown that the heterostructure array required competitive HER and OER overpotentials of 94 and 191 mV in alkaline environment (10 mA/cm2), respectively. Encouragingly, the symmetrical two-electrode system constructed with the heterostructure array only required an ultra-low cell voltage of 1.535 V to achieve a current density of 10 mA/cm2. This indicates the system has huge potential in overall water splitting. The electrocatalytic mechanism was studied systematically by combining theoretical calculation and experimental characterization. It was found that the surface coating of amorphous CePO4 could not only significantly increase the electrochemical active surface area and improve the charge transfer of crystalline Ni5P4 nanosheets, but could also regulate d-band center of Ni5P4 and optimize the adsorption towards reaction intermediates in water splitting. The results not only provide an excellent crystalline/amorphous core/shell heterostructure bifunctional electrocatalyst for overall water splitting but also greatly expand the application of rare earth metal phosphate CePO4.
Collapse
Affiliation(s)
- Yan Liang
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Xiaojian Zhao
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Peipei Yan
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Li Xue
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Hongying Li
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Lisheng Gu
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Yongdong Long
- Department of Artificial Intelligence, Nanchang Key Laboratory of New Electronic Components and Sensing Technology, Jiangxi University of Technology, Nanchang 330098, Jiangxi, PR China
| | - Ting Yu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, PR China
| | - Yong Yang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecommunication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, PR China.
| |
Collapse
|