1
|
Ge W, De Silva R, Fan Y, Sisson SA, Stenzel MH. Machine Learning in Polymer Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413695. [PMID: 39924835 PMCID: PMC11923530 DOI: 10.1002/adma.202413695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/21/2024] [Indexed: 02/11/2025]
Abstract
Machine learning is increasingly being applied in polymer chemistry to link chemical structures to macroscopic properties of polymers and to identify chemical patterns in the polymer structures that help improve specific properties. To facilitate this, a chemical dataset needs to be translated into machine readable descriptors. However, limited and inadequately curated datasets, broad molecular weight distributions, and irregular polymer configurations pose significant challenges. Most off the shelf mathematical models often need refinement for specific applications. Addressing these challenges demand a close collaboration between chemists and mathematicians as chemists must formulate research questions in mathematical terms while mathematicians are required to refine models for specific applications. This review unites both disciplines to address dataset curation hurdles and highlight advances in polymer synthesis and modeling that enhance data availability. It then surveys ML approaches used to predict solid-state properties, solution behavior, composite performance, and emerging applications such as drug delivery and the polymer-biology interface. A perspective of the field is concluded and the importance of FAIR (findability, accessibility, interoperability, and reusability) data and the integration of polymer theory and data are discussed, and the thoughts on the machine-human interface are shared.
Collapse
Affiliation(s)
- Wei Ge
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
- School of Mathematics and Statistics and UNSW Data Science Hub, University of New South Wales, Sydney, 2052, Australia
| | - Ramindu De Silva
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
- School of Mathematics and Statistics and UNSW Data Science Hub, University of New South Wales, Sydney, 2052, Australia
- Data61, CSIRO, Sydney, NSW, 2015, Australia
| | - Yanan Fan
- School of Mathematics and Statistics and UNSW Data Science Hub, University of New South Wales, Sydney, 2052, Australia
- Data61, CSIRO, Sydney, NSW, 2015, Australia
| | - Scott A Sisson
- School of Mathematics and Statistics and UNSW Data Science Hub, University of New South Wales, Sydney, 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
2
|
Zhang X, Sheng Y, Liu X, Yang J, Goddard Iii WA, Ye C, Zhang W. Polymer-Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials. J Chem Theory Comput 2024; 20:2908-2920. [PMID: 38551455 DOI: 10.1021/acs.jctc.3c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The graph representation of complex materials plays a crucial role in the field of inorganic and organic materials investigations for developing data-centric materials science, such as those using graph neural networks (GNNs). However, the currently prevalent GNN models are primarily employed for investigating periodic crystals and organic small molecule data, yet they still encounter challenges in terms of interpretability and computational efficiency when applied to polymer monomers and organic macromolecules data. There is still a lack of graph representation of organic polymers and macromolecules specifically tailored for GNN models to explore the structural characteristics. The Polymer-unit Graph, a novel coarse-grained graph representation method introduced in study, is dedicated to expressing and analyzing polymers and macromolecules. By incorporating the Polymer-unit Graph into the GNN models and analyzing the organic semiconductor (OSC) materials database, it becomes possible to uncover intricate structure-property relationships involving branched-chain engineering, fluoridation substitution, and donor-acceptor combination effects on the elementary structure of OSC polymers. Furthermore, the Polymer-unit Graph enables visualizing the relationship between target properties and polymer units while reducing training time by an impressive 98% and minimizing molecular graph representation models. In conclusion, the Polymer-unit Graph successfully integrates the concept of Polymer-unit into the field of GNNs, enabling more accurate analysis and understanding of organic polymers and macromolecules.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ye Sheng
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiumin Liu
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jiong Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, PR China
| | - William A Goddard Iii
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - Caichao Ye
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wenqing Zhang
- Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, PR China
| |
Collapse
|