1
|
Li L, Han M, Zhang P, Yang D, Zhang M. Recent Advances in Engineering Fe-N-C Catalysts for Oxygen Electrocatalysis in Zn-Air Batteries. CHEMSUSCHEM 2025; 18:e202401186. [PMID: 39215381 DOI: 10.1002/cssc.202401186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Fe-N-C single-atom catalysts (SACs) have emerged as one of the most promising candidates for oxygen electrocatalysis due to their maximized atom utilization efficiency, high intrinsic activity, and strong metal-support interaction. Significant progress has been made in engineering Fe-N-C SACs for oxygen electrocatalysis in Zn-air batteries (ZABs). This review provides a comprehensive overview of the recent advancements in Fe-N-C SACs, with a special focus on effective engineering strategies, their performance in oxygen electrocatalysis, and their potential applications in ZABs. The review also discusses the key challenges and future directions in the development of Fe-N-C SACs for efficient and durable oxygen electrocatalysis in ZABs. This review aims to offer valuable insights into the current state of research in this field and to guide future efforts in the development of advanced oxygen electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Jiangsu Province, Changzhou, 213164, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| | | | - Donglei Yang
- PetroChina Tarim Oilfield Company, Korla, 841000, China
| | - Meng Zhang
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| |
Collapse
|
2
|
Jin S, Tan W, Tang X, Li M, Yu X, Zhang H, Song S, Zeng T. Unraveling the Fundamentals of Axial Coordination FeN 4+1 Sites Regulating the Peroxymonosulfate Activation for Fenton-Like Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405012. [PMID: 39380378 DOI: 10.1002/smll.202405012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Indexed: 10/10/2024]
Abstract
Precise modulation of the axial coordination microenvironment in single-atom catalysts (SACs) to enhance peroxymonosulfate (PMS) activation represents a promising yet underexplored approach. This study introduces a pyrolysis-free strategy to fabricate SACs with well-defined axial-FeN4+1 coordination structures. By incorporating additional out-of-plane axial nitrogen into well-defined FeN4 active sites within a planar, fully conjugated polyphthalocyanine framework, FeN4+1 configurations are developed that significantly enhance PMS activation. The axial-FeN4+1 catalyst excelled in activating PMS, with a high bisphenol A (BPA) degradation rate of 2.256 min-1, surpassing planar-FeN4/PMS systems by 6.8 times. Theoretical calculations revealed that the axial coordination between N and the Fe sites forms an optimized axial FeN4+1 structure, disrupting the electron distribution symmetry of Fe and optimizing the electron distribution of the Fe 3d orbital (increasing the d-band center from -1.231 to -0.432 eV). Consequently, this led to an enhanced perpendicular adsorption energy of PMS from -1.79 to -1.82 eV and reduced energy barriers for the formation of the key reaction intermediate (O*) that generates 1O2. This study provides new insights into PMS activation through the axial coordinated engineering of well-defined SACs in water purification processes.
Collapse
Affiliation(s)
- Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Wenxian Tan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xiaofeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Mengxuan Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xinyi Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Haiyan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, Zhejiang, 312000, P. R. China
| |
Collapse
|
3
|
Xu C, Li X, Guo PP, Yang KZ, Zhao YM, Chi HM, Xu Y, Wei PJ, Wang ZQ, Xu Q, Liu JG. Creating Asymmetric Fe-N 3C-N Sites in Single-Atom Catalysts Boosts Catalytic Performance for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37927-37937. [PMID: 38980948 DOI: 10.1021/acsami.4c05114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Fine tuning of the metal site coordination environment of a single-atom catalyst (SAC) to boost its catalytic activity for oxygen reduction reaction (ORR) is of significance but challenging. Herein, we report a new SAC bearing Fe-N3C-N sites with asymmetric in-plane coordinated Fe-N3C and axial coordinated N atom for ORR, which was obtained by pyrolysis of an iron isoporphyrin on polyvinylimidazole (PVI) coated carbon black. The C@PVI-(NCTPP)Fe-800 catalyst exhibited significantly improved ORR activity (E1/2 = 0.89 V vs RHE) than the counterpart SAC with Fe-N4-N sites in 0.1 M KOH. Significantly, the Zn-air batteries equipped with the C@PVI-(NCTPP)Fe-800 catalyst demonstrated an open-circuit voltage (OCV) of 1.45 V and a peak power density (Pmax) of 130 mW/cm2, outperforming the commercial Pt/C catalyst (OCV = 1.42 V; Pmax = 119 mW/cm2). The density functional theory (DFT) calculations revealed that the d-band center of the asymmetric Fe-N3C-N structure shifted upward, which enhances its electron-donating ability, favors O2 adsorption, and supports O-O bond activation, thus leading to significantly promoted catalytic activity. This research presents an intriguing strategy for the designing of the active site architecture in metal SACs with a structure-function controlled approach, significantly enhancing their catalytic efficiency for the ORR and offering promising prospects in energy-conversion technologies.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai 201210, P. R. China
| | - Peng-Peng Guo
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kun-Zu Yang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ye-Min Zhao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hua-Min Chi
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ying Xu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhi-Qiang Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai 201210, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Bai J, Lin Y, Xu J, Zhou W, Zhou P, Deng Y, Lian Y. PGM-free single atom catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:7113-7123. [PMID: 38912537 DOI: 10.1039/d4cc02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The progress of proton exchange membrane fuel cells (PEMFCs) in the clean energy sector is notable for its efficiency and eco-friendliness, although challenges remain in terms of durability, cost and power density. The oxygen reduction reaction (ORR) is a key sluggish process and although current platinum-based catalysts are effective, their high cost and instability is a significant barrier. Single-atom catalysts (SACs) offer an economically viable alternative with comparable catalytic activity for ORR. The primary concern regarding SACs is their operational stability under PEMFCs conditions. In this article, we review current strategies for increasing the catalytic activity of SACs, including increasing active site density, optimizing metal center coordination through heteroatom doping, and engineering porous substrates. To enhance durability, we discuss methods to stabilize metal centers, mitigate the effects of the Fenton reaction, and improve graphitization of the carbon matrix. Future research should apply computational chemistry to predict catalyst properties, develop in situ characterization for real-time active site analysis, explore novel catalysts without the use of platinum-based catalysts to reduce dependence on rare and noble metal, and investigate the long-term stability of catalyst under operating conditions. The aim is to engineer SACs that meet and surpass the performance benchmarks of PEMFCs, contributing to a sustainable energy future.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Jinnan Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Wangkai Zhou
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yuebin Lian
- School of Optoelectronics, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|
5
|
Li L, Xu J, Zhu Q, Meng X, Xu H, Han M. Non-noble metal single-atoms for oxygen electrocatalysis in rechargeable zinc-air batteries: recent developments and future perspectives. Dalton Trans 2024; 53:1915-1934. [PMID: 38192245 DOI: 10.1039/d3dt03249c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Ever-growing demands for zinc-air batteries (ZABs) call for the development of advanced electrocatalysts. Single-atom catalysts (SACs), particularly those for isolating non-noble metals (NBMs), are attracting great interest due to their merits of low cost, high atom utilization efficiency, structural tunability, and extraordinary activity. Rational design of advanced NBM SACs relies heavily on an in-depth understanding of reaction mechanisms. To gain a better understanding of the reaction mechanisms of oxygen electrocatalysis in ZABs and guide the design and optimization of more efficient NBM SACs, we herein organize a comprehensive review by summarizing the fundamental concepts in the field of ZABs and the recent advances in the reported NBM SACs. Moreover, the selection of NBM elements and supports of SACs and some effective strategies for enhancing the electrochemical performance of ZABs are illustrated in detail. Finally, the challenges and future direction in this field of ZABs are also discussed.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Jixing Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Xiangjun Meng
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Hongliang Xu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China.
| |
Collapse
|
6
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|