1
|
Fang H, Yang Q, Liu K, Huang X, Xie Y. A deep neural network for tactile perception in open scenes. iScience 2025; 28:112330. [PMID: 40343284 PMCID: PMC12059672 DOI: 10.1016/j.isci.2025.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/15/2025] [Accepted: 03/28/2025] [Indexed: 05/11/2025] Open
Abstract
Tactile perception is important for the robots to understand their working environment. While in real-world applications, robots usually must face unexpected changes in external conditions, such as the re-installation of the robot end effector or the change of the installation location. Consequently, the collected tactile material data tend to vary to a certain extent, which brings great difficulties to the tactile perception. To handle this problem, different from the former studies of tactile perception in enclosed environments, this study focuses on the tactile material recognition task using robot electronic skin in open scenes. We construct a cross-batch tactile dataset to simulate open scenes and propose the multi-receptive field attention enhancement network (MRFE) to handle tactile material recognition. Compared with other machine learning algorithms, experiments show that the proposed method overcomes the problem of data drift caused by changes in posture, contact force, sliding velocities, exploratory motions, and assembly conditions.
Collapse
Affiliation(s)
- Huirong Fang
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
- Intelligent Monitoring of the Fujian Provincial Higher Education Application Technology Engineering Center, Zhangzhou 363000, China
| | - Qianhui Yang
- Digital Media Technology Department, Film School of Xiamen University, Xiamen 361102, China
| | - Kunhong Liu
- Digital Media Technology Department, Film School of Xiamen University, Xiamen 361102, China
- Key laboratory of Digital Protection and Intelligent Processing of lntangible Cultural Heritage of Fujian and Taiwan, Ministry of Culture and Tourism, Xiamen 361102, China
| | - Xiangyi Huang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yu Xie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Wang F, Yang P, Liu W, Li Z, Wang Z, Xiang Y, Zhang Q, Hu X. Simultaneous Visualization of Dynamical and Static Tactile Perception Using Piezoelectric-Ultrasonic Bimodal Electronic Skin Based on In Situ Polarized PVDF-TrFE/2DBP Composites and the TFT Array. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16057-16071. [PMID: 40007318 DOI: 10.1021/acsami.4c21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The key to realizing completed bionic tactile perception of human skin using electronic skin relies on simultaneously distinguishing dynamic and static stimuli and restoring their characteristic information, which is realized by integration of several individual sensors but remains certain limitations including large physical size and high energy consumption. In this study, a piezoelectric-ultrasonic bimodal electronic skin (PUVE) based on in situ polarized PVDF-TrFE/2DBP composites and a thin-film transistor (TFT) array is fabricated. The incorporation of 2DBP into the PVDF-TrFE film and the in situ polarization approach provide excellent piezoelectric and ultrasonic performances of PVDF-TrFE/2DBP composites. PUVE has an ultrahigh sensitivity of 3.2 mV kPa-1 over a wide pressure (0-310 kPa) range, with excellent spatial resolution (50 μm) and response time (40 ms). Meanwhile, the PUVE demonstrated outstanding repeatability and bending stability in 1500 cycles of cyclic pressure and 4000 cycles of 180° bending. The integrated piezoelectric and ultrasonic functions of PUVE can respond individually to dynamic and static tactile stimuli to ensure perceiving and decoupling of the dynamical and static mechanical signals with one single sensor. The PVDF-TrFE/2DBP composites is further integrated with the TFT array, realizing visualization function of contacting objects and restoring their characteristic information including the texture and location. Thus, the PUVE is expected to have a wide range of applications in intelligent robots and human prostheses.
Collapse
Affiliation(s)
- Fuyang Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Pengfei Yang
- Huizhou China Eagle Electronic Technology Inc., Huizhou 516001, Guangdong, China
| | - Wei Liu
- Zhuhai Henger Microelectronic Equipment Co., Ltd., China, Zhuhai 519000, Guangdong, China
| | - Zhiqiang Li
- Zhuhai Henger Microelectronic Equipment Co., Ltd., China, Zhuhai 519000, Guangdong, China
| | - Zhao Wang
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Qian Zhang
- The School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 611731, Sichuan, China
| | - Xiaoran Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
3
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Liu LF, Li T, Lai QT, Tang G, Sun QJ. Recent Advances in Self-Powered Tactile Sensing for Wearable Electronics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2493. [PMID: 38893757 PMCID: PMC11172942 DOI: 10.3390/ma17112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
With the arrival of the Internet of Things era, the demand for tactile sensors continues to grow. However, traditional sensors mostly require an external power supply to meet real-time monitoring, which brings many drawbacks such as short service life, environmental pollution, and difficulty in replacement, which greatly limits their practical applications. Therefore, the development of a passive self-power supply of tactile sensors has become a research hotspot in academia and the industry. In this review, the development of self-powered tactile sensors in the past several years is introduced and discussed. First, the sensing principle of self-powered tactile sensors is introduced. After that, the main performance parameters of the tactile sensors are briefly discussed. Finally, the potential application prospects of the tactile sensors are discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Jun Sun
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China (G.T.)
| |
Collapse
|
5
|
Zhang T, Zhao M, Zhai M, Wang L, Ma X, Liao S, Wang X, Liu Y, Chen D. Improving the Resolution of Flexible Large-Area Tactile Sensors through Machine-Learning Perception. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11013-11025. [PMID: 38353218 DOI: 10.1021/acsami.3c17880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Industrial robots are the main piece of equipment of intelligent manufacturing, and array-type tactile sensors are considered to be the core devices for their active sensing and understanding of the production environment. A great challenge for existing array-type tactile sensors is the wiring of sensing units in a limited area, the contradiction between a small number of sensing units and high resolution, and the deviation of the overall output pattern due to the difference in the performance of each sensing unit itself. Inspired by the human somatosensory processing hierarchy, we combine tactile sensors with artificial intelligence algorithms to simplify the sensor architecture while achieving tactile resolution capabilities far greater than the number of signal channels. The prepared 8-electrode carbon-based conductive network achieves high-precision identification of 32 regions with 97% classification accuracy assisted by a quadratic discriminant analysis algorithm. Notably, the output of the sensor remains unchanged after 13,000 cycles at 60 kPa, indicating its excellent durability performance. Moreover, the large-area skin-like continuous conductive network is simple to fabricate, cost-effective, and can be easily scaled up/down depending on the application. This work may address the increasing need for simple fabrication, rapid integration, and adaptable geometry tactile sensors for use in industrial robots.
Collapse
Affiliation(s)
- Tong Zhang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Minghui Zhao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Mingxuan Zhai
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Lisha Wang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong 266000, China
| | - Xingyu Ma
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Shengmei Liao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Xiaona Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Yijian Liu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| |
Collapse
|
6
|
Chen Z, Qu C, Yao J, Zhang Y, Xu Y. Two-Stage Micropyramids Enhanced Flexible Piezoresistive Sensor for Health Monitoring and Human-Computer Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7640-7649. [PMID: 38303602 DOI: 10.1021/acsami.3c18788] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
High-performance flexible piezoresistive sensors are becoming increasingly essential in various novel applications such as health monitoring, soft robotics, and human-computer interaction. The evolution of the interfacial contact morphology determines the sensing properties of piezoresistive devices. The introduction of microstructures enriches the interfacial contact morphology and effectively boosts the sensitivity; however, the limited compressibility of conventional microstructures leads to rapid saturation of the sensitivity in the low-pressure range, which hinders their application. Herein, we present a flexible piezoresistive sensor featuring a two-stage micropyramid array structure, which effectively enhances the sensitivity while widening the sensing range. Owing to the synergistic enhancement effect resulting from the sequential contact of micropyramids of various heights, the devices demonstrate remarkable performance, including boosting sensitivity (30.8 kPa-1) over a wide sensing range (up to 200 kPa), a fast response/recovery time (75/50 ms), and an ultralong durability of 15,000 loading-unloading cycles. As a proof of concept, the sensor is applied to detect human physiological and motion signals, further demonstrating a real-time spatial pressure distribution sensing system and a game control system, showing great potential for applications in health monitoring and human-computer interaction.
Collapse
Affiliation(s)
- Zhihao Chen
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Changming Qu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Jingjing Yao
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Yuanlong Zhang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| | - Yun Xu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
| |
Collapse
|