1
|
Di Carmine G, D’Agostino C, Bortolini O, Poletti L, De Risi C, Ragno D, Massi A. Heterogeneous Organocatalysts for Light-Driven Reactions in Continuous Flow. Molecules 2024; 29:2166. [PMID: 38792028 PMCID: PMC11124298 DOI: 10.3390/molecules29102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Within the realm of organic synthesis, photocatalysis has blossomed since the beginning of the last decade. A plethora of classical reactivities, such as selective oxidation of alcohol and amines, redox radical formation of reactive species in situ, and indirect activation of an organic substrate for cycloaddition by EnT, have been revised in a milder and more sustainable fashion via photocatalysis. However, even though the spark of creativity leads scientists to explore new reactions and reactivities, the urgency of replacing the toxic and critical metals that are involved as catalysts has encouraged chemists to find alternatives in the branch of science called organocatalysis. Unfortunately, replacing metal catalysts with organic analogues can be too expensive sometimes; however, this drawback can be solved by the reutilization of the catalyst if it is heterogeneous. The aim of this review is to present the recent works in the field of heterogeneous photocatalysis, applied to organic synthesis, enabled by continuous flow. In detail, among the heterogeneous catalysts, g-CN, polymeric photoactive materials, and supported molecular catalysts have been discussed within their specific sections, rather than focusing on the types of reactions.
Collapse
Affiliation(s)
- Graziano Di Carmine
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Carmine D’Agostino
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
- Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum—University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Olga Bortolini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Lorenzo Poletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Carmela De Risi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| | - Alessandro Massi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, The University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (L.P.); (C.D.R.); (D.R.); (A.M.)
| |
Collapse
|
2
|
Price CAH, Torres-Lopez A, Evans R, Hondow NS, Isaacs MA, Jamal AS, Parlett CMA. Impact of Porous Silica Nanosphere Architectures on the Catalytic Performance of Supported Sulphonic Acid Sites for Fructose Dehydration to 5-Hydroxymethylfurfural. Chempluschem 2023; 88:e202300413. [PMID: 37796663 DOI: 10.1002/cplu.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
5-hydroxymethylfurfural represents a key chemical in the drive towards a sustainable circular economy within the chemical industry. The final step in 5-hydroxymethylfurfural production is the acid catalysed dehydration of fructose, for which supported organoacids are excellent potential catalyst candidates. Here we report a range of solid acid catalysis based on sulphonic acid grafted onto different porous silica nanosphere architectures, as confirmed by TEM, N2 porosimetry, XPS and ATR-IR. All four catalysts display enhanced active site normalised activity and productivity, relative to alternative silica supported equivalent systems in the literature, with in-pore diffusion of both substrate and product key to both performance and humin formation pathway. An increase in-pore diffusion coefficient of 5-hydroxymethylfurfural within wormlike and stellate structures results in optimal productivity. In contrast, poor diffusion within a raspberry-like morphology decreases rates of 5-hydroxymethylfurfural production and increases its consumption within humin formation.
Collapse
Affiliation(s)
- Cameron-Alexander H Price
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Antonio Torres-Lopez
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Robert Evans
- Aston Institute of Materials Research, Aston University, Birmingham, B4 7ET, UK
| | - Nicole S Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark A Isaacs
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Lab, Didcot, OX11 0FA, UK
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Aina Syahida Jamal
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Christopher M A Parlett
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| |
Collapse
|