1
|
Ruzi M, Celik N, Sahin F, Sakir M, Onses MS. Nanostructured Surfaces with Plasmonic Activity and Superhydrophobicity: Review of Fabrication Strategies and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408189. [PMID: 39757431 DOI: 10.1002/smll.202408189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Plasmonics and superhydrophobicity have garnered broad interest from academics and industry alike, spanning fundamental scientific inquiry and practical technological applications. Plasmonic activity and superhydrophobicity rely heavily on nanostructured surfaces, providing opportunities for their mutually beneficial integration. Engineering surfaces at microscopic and nanoscopic length scales is necessary to achieve superhydrophobicity and plasmonic activity. However, the dissimilar surface energies of materials commonly used in fabricating plasmonic and superhydrophobic surfaces and different length scales pose various challenges to harnessing their properties in synergy. In this review, an overview of various techniques and materials that researchers have developed over the years to overcome this challenge is provided. The underlying mechanisms of both plasmonics and superhydrophobicity are first overviewed. Next, a general classification scheme is introduced for strategies to achieve plasmonic and superhydrophobic properties. Following that, applications of multifunctional plasmonic and superhydrophobic surfaces are presented. Lastly, a future perspective is presented, highlighting shortcomings, and opportunities for new directions.
Collapse
Affiliation(s)
- Mahmut Ruzi
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - Nusret Celik
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Furkan Sahin
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Beykent University, Istanbul, 34398, Turkey
| | - Menekse Sakir
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - M Serdar Onses
- ERNAM - Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
2
|
Torun I, Huang C, Kiremitler NB, Kalay M, Shim M, Onses MS. Coffee-Ring Mediated Thinning and Thickness-Dependent Dewetting Modes in Printed Polymer Droplets Coupled with Assembly of Quantum Dots for Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405429. [PMID: 39077934 DOI: 10.1002/smll.202405429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Molecular transport processes in printed polymer droplets hold enormous importance for understanding wetting phenomena and designing systems in applications such as encoding, electronics, photonics, and sensing. This paper studies thickness-dependent dewetting modes that are activated by thermal annealing and driven by interfacial interactions within microscopically confined polymeric features. The printing of poly(2-vinylpyridine) is performed in a regime where coffee-ring effects lead to strong thinning of the central region of the deposit. Thermal annealing leads to two different modes of dewetting that depend on the thickness of the central region. Mode I refers to the formation of randomly positioned small features surrounded by large hemispherical ones located along the periphery of the printed features and occurs when the central regions are thin. Observed at large central thicknesses, Mode II mediates significant molecular transport from edges toward the center of the printed droplet with thermal annealing and forms a hemispherical feature from the initial ring-like deposit. The selective adsorption of red, green, and blue emitting quantum dots over the poly(2-vinylpyridine) results in photoluminescent patterns. The selective assembly of photoluminescent quantum dots over patterned surfaces leads to deterministic and stochastic features beneficial to creating security labels for anti-counterfeiting applications.
Collapse
Affiliation(s)
- Ilker Torun
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Conan Huang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - N Burak Kiremitler
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
| | - Mustafa Kalay
- Department of Electricity and Energy, Kayseri University, Kayseri, 38039, Turkey
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mustafa Serdar Onses
- Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
- ERNAM - Nanotechnology Application and Research Center, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
3
|
Lin X, Li Q, Tang Y, Chen Z, Chen R, Sun Y, Lin W, Yi G, Li Q. Physical Unclonable Functions with Hyperspectral Imaging System for Ultrafast Storage and Authentication Enabled by Random Structural Color Domains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401983. [PMID: 38894574 PMCID: PMC11336904 DOI: 10.1002/advs.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/28/2024] [Indexed: 06/21/2024]
Abstract
Physical unclonable function (PUF) is attractive in modern encryption technologies. Addressing the disadvantage of slow data storage/authentication in optical PUF is paramount for practical applications but remains an on-going challenge. Here, a highly efficient PUF strategy based on random structural color domains (SCDs) of cellulose nanocrystal (CNC) is proposed for the first time, combing with hyperspectral imaging system (HIS) for ultrafast storage and authentication. By controlling the growth and fusion behavior of the tactoids of CNC, the SCDs display an irregular and random distribution of colors, shapes, sizes, and reflectance spectra, which grant unique and inherent fingerprint-like characteristics that are non-duplicated. Based on images and spectra, these fingerprint features are used to develop two sets of PUF key generation methods, which can be respectively authenticated at the user-end and the manufacturer-front-end that achieving a high coding capacity of at least 22304. Notably, the use of HIS greatly shortens the time of key reading and generation (≈5 s for recording, 0.5-0.7 s for authentication). This new optical PUF labels can not only solve slow data storage and complicated authentication in optical PUF, but also impulse the development of CNC in industrial applications by reducing color uniformity requirement.
Collapse
Affiliation(s)
- Xiaofeng Lin
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Quhai Li
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
| | - Zhaohan Chen
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Ruilian Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275China
| | - Yingjuan Sun
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Wenjing Lin
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Guobin Yi
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang CenterJieyang515200China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
- Materials Science Graduate ProgramKent State UniversityKentOH44242USA
| |
Collapse
|
4
|
Esidir A, Pekdemir S, Kalay M, Onses MS. Ultradurable Embedded Physically Unclonable Functions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16532-16543. [PMID: 38511845 PMCID: PMC10995905 DOI: 10.1021/acsami.4c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Physically unclonable functions (PUFs) have attracted growing interest for anticounterfeiting and authentication applications. The practical applications require durable PUFs made of robust materials. This study reports a practical strategy to generate extremely robust PUFs by embedding random features onto a substrate. The chaotic and low-cost electrohydrodynamic deposition process generates random polymeric features over a negative-tone photoresist film. These polymer features function as a conformal photomask, which protects the underlying photoresist from UV light, thereby enabling the generation of randomly positioned holes. Dry plasma etching of the substrate and removal of the photoresist result in the transfer of random features to the underlying silicon substrate. The matching of binary keys and features via different algorithms facilitates authentication of features. The embedded PUFs exhibit extreme levels of thermal (∼1000 °C) and mechanical stability that exceed the state of the art. The strength of this strategy emerges from the PUF generation directly on the substrate of interest, with stability that approaches the intrinsic properties of the underlying material. Benefiting from the materials and processes widely used in the semiconductor industry, this strategy shows strong promise for anticounterfeiting and device security applications.
Collapse
Affiliation(s)
- Abidin Esidir
- ERNAM
- Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
- Graduate
School of Natural and Applied Science, Materials Science and Engineering
Program, Erciyes University, Kayseri 38039, Turkey
| | - Sami Pekdemir
- ERNAM
- Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department
of Aeronautical Engineering, Faculty of Aeronautics and Astronautics, Erciyes University, Kayseri 38039, Turkey
| | - Mustafa Kalay
- ERNAM
- Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department
of Electricity and Energy, Kayseri University, Kayseri 38039, Turkey
| | - Mustafa Serdar Onses
- ERNAM
- Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department
of Materials Science and Engineering, Erciyes
University, Kayseri 38039, Turkey
| |
Collapse
|
5
|
Cheng H, Qu J, Mao W, Chen S, Dong H. Continuous-Wave Pumped Monolayer WS 2 Lasing for Photonic Barcoding. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:614. [PMID: 38607148 PMCID: PMC11013185 DOI: 10.3390/nano14070614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Micro/nano photonic barcoding has emerged as a promising technology for information security and anti-counterfeiting applications owing to its high security and robust tamper resistance. However, the practical application of conventional micro/nano photonic barcodes is constrained by limitations in encoding capacity and identification verification (e.g., broad emission bandwidth and the expense of pulsed lasers). Herein, we propose high-capacity photonic barcode labels by leveraging continuous-wave (CW) pumped monolayer tungsten disulfide (WS2) lasing. Large-area, high-quality monolayer WS2 films were grown via a vapor deposition method and coupled with external cavities to construct optically pumped microlasers, thus achieving an excellent CW-pumped lasing with a narrow linewidth (~0.39 nm) and a low threshold (~400 W cm-2) at room temperature. Each pixel within the photonic barcode labels consists of closely packed WS2 microlasers of varying sizes, demonstrating high-density and nonuniform multiple-mode lasing signals that facilitate barcode encoding. Notably, CW operation and narrow-linewidth lasing emission could significantly simplify detection. As proof of concept, a 20-pixel label exhibits a high encoding capacity (2.35 × 10108). This work may promote the advancement of two-dimensional materials micro/nanolasers and offer a promising platform for information encoding and security applications.
Collapse
Affiliation(s)
- Haodong Cheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.C.); (J.Q.)
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Junyu Qu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.C.); (J.Q.)
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Wangqi Mao
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (H.C.); (J.Q.)
- Hunan Institute of Optoelectronic Integration, Hunan University, Changsha 410082, China
| | - Hongxing Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Hangzhou Institute for Advanced Study, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Ma W, Qian Q, Qaid SMH, Zhao S, Liang D, Cai W, Zang Z. Water-Molecule-Induced Reversible Fluorescence in a One-Dimensional Mn-Based Hybrid Halide for Anticounterfeiting and Digital Encryption-Decryption. NANO LETTERS 2023; 23:8932-8939. [PMID: 37724871 DOI: 10.1021/acs.nanolett.3c02356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Hybrid metal halides with reversible transformation of structure and luminescence properties have attracted significant attention in anticounterfeiting. However, their long transition time and slow response rate may hinder the rapid identification of confidential information. Here, a one-dimensional hybrid manganese-based halide, i.e., (C5H11N3)MnCl2Br2·H2O, is prepared and demonstrates the phenomenon of water-molecule-induced reversible photoluminescence transformation. Heating for <40 s induces a dynamic transfer of red-emissive (C5H11N3)MnCl2Br2·H2O to green-emissive (C5H11N3)MnCl2Br2. In addition, the green emission can gradually revert to red emission during a cooling process in a moist environment, demonstrating excellent reversibility. It is found that the water molecule acts as an external stimulus to realize the reversible transition between red and green emission, which also exhibits remarkable stability during repeated cycles. Furthermore, with the assistance of heating and cooling, a complex digital encryption-decryption and an optical "AND" logical gate are achieved, facilitating the development of anticounterfeiting information security.
Collapse
Affiliation(s)
- Wen Ma
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Qingkai Qian
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Saif M H Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shuangyi Zhao
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Dehai Liang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Wensi Cai
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| |
Collapse
|