1
|
Luo X, Xu L, Yang L, Zhao J, Asefa T, Qiu R, Huang Z. Ball Milling of La 2O 3 Tailors the Crystal Structure, Reactive Oxygen Species, and Free Radical and Non-Free Radical Photocatalytic Pathways. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18671-18685. [PMID: 38591358 DOI: 10.1021/acsami.3c15677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Non-free radical photocatalysis with metal oxide catalysts is an important advanced oxidation process that enables the removal of various emerging environmental pollutants, such as tetracycline. Here, four hexagonal La2O3 photocatalysts with different densities of oxygen vacancy and crystalline features are synthesized and then further treated by ball milling. Ball milling of these La2O3 photocatalysts is found to increase the amount of oxygen vacancies on their surfaces and thereby the amount of 1O2 species produced by them. The photocatalytic degradation of TC by these La2O3 photocatalysts depends on the oxygen vacancies present on them. Furthermore, the ones with a strong (101) diffraction peak remove tetracycline from water systems largely with 1O2 and •OH species, whereas those with a weak (101) diffraction peak do so mainly via 1O2 and direct electron transfer (DET) process. Their overall catalytic properties are also studied by density functional theory calculations. Moreover, the organic products produced from tetracycline by La2O3 photocatalysts containing a strong (101) diffraction peak are found to be less toxic than those produced by La2O3 photocatalysts containing a weak (101) diffraction peak. This study also provides convincing evidence that the structures of La2O3 determine the species that is produced by it and that end up mediating photocatalytic reaction pathways (i.e., free radical versus non-free radical) to degrade an emerging environment pollutant.
Collapse
Affiliation(s)
- Xuewen Luo
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
| | - Leba Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
| | - Jiawen Zhao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
| | - Zhujian Huang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Street, Guangzhou 510642, China
| |
Collapse
|
2
|
Muthamizh S, Shahadat Hossain M, Alsulmi A, Macadangdang RR, Sambasivam S, Arul Varman K. Design and construction of heterostructured Zn 2V 2O 7 cubes and hexagons as an electrode material for high-performance asymmetric supercapacitor applications. J Colloid Interface Sci 2024; 660:215-225. [PMID: 38244490 DOI: 10.1016/j.jcis.2024.01.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Hierarchical nanostructures have harvested noteworthy attention lately owing to their remarkable capabilities in the fields of energy storing and transformation, catalysis, and electrical devices. We established an effort less and template-free synthetic method to create hierarchical hetero nanostructures of Zn2V2O7, taking into account the benefits of hierarchical nanostructures, we investigated the performance of HNs (Hierarchical Nanostructures) as electrochemical supercapacitors. Electrochemical tests were tested in a 6 M KOH solution to assess their capabilities. The Zn2V2O7 electrode's measured specific capacitance was 750F/g at 1 A/g, with outstanding stability and an excellent retention capacity of 85 % later 5000 cycles in three- electrode electrochemical cells. Asymmetric device such as Zn2V2O7//AC provides a specific capacitance of 76.8F/g at 1 A/g with energy and power densities of 27.3 Wh kg-1 and 800 W kg-1 respectively. The device withstands 85 % of its initial capacity after 5000 continuous GCD cycles at 10 A/g. The outstanding performance observed clearly demonstrates the significant potential and practical utility of Zn2V2O7 in the realm of more efficient energy storage applications.
Collapse
Affiliation(s)
- S Muthamizh
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - Md Shahadat Hossain
- Department of Chemistry, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Ali Alsulmi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Sangaraju Sambasivam
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - K Arul Varman
- Department of Physics & Nanotechnology, SRM Institute of Science & Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|