1
|
Zhao J, Wang Y, Liu B. Doping Detection Based on the Nanoscale: Biosensing Mechanisms and Applications of Two-Dimensional Materials. BIOSENSORS 2025; 15:227. [PMID: 40277541 PMCID: PMC12024749 DOI: 10.3390/bios15040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Doping undermines fairness in sports and threatens athlete health, while conventional detection methods like LC-MS and GC-MS face challenges such as complex procedures, matrix interferences, and lengthy processing times, limiting on-site applications. Two-dimensional (2D) materials, including graphene, MoS2, and metal-organic frameworks (MOFs), offer promising solutions due to their large surface areas, tunable electronic structures, and special interactions with doping agents, such as hydrogen bonding, π-π stacking, and electrostatic forces. These materials enable signal transduction through changes in conductivity or fluorescence quenching. This review highlights the use of 2D materials in doping detection. For example, reduced graphene oxide-MOF composites show high sensitivity for detecting anabolic steroids like testosterone, while NiO/NGO nanocomposites exhibit strong selectivity for stimulants like ephedrine. However, challenges such as environmental instability and high production costs hinder their widespread application. Future efforts should focus on improving material stability through chemical modifications, reducing production costs, and integrating these materials into advanced systems like machine learning. Such advancements could revolutionize doping detection, ensuring fairness in sports and protecting athlete health.
Collapse
Affiliation(s)
| | | | - Bing Liu
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai 200438, China; (J.Z.); (Y.W.)
| |
Collapse
|
2
|
Garika V, Babbar S, Samanta S, Harilal S, Eisenberg-Lerner A, Rotfogel Z, Pikhay E, Shehter I, Elkayam A, Bashouti MY, Akabayov B, Ron I, Hazan G, Roizin Y, Shalev G. Addressing the challenge of solution gating in biosensors based on field-effect transistors. Biosens Bioelectron 2024; 265:116689. [PMID: 39208511 DOI: 10.1016/j.bios.2024.116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Transistor-based biosensing (BioFET) is a long-enduring vision for next generation medical diagnostics. The study addresses a challenge associated with the BioFET solution gating. The standard BioFET sensing measurement involves sweeping of the solution gate (Vsol) with a concurrent measurement of the source-drain current (IDS). This IDS-Vsol sweep poses a great challenge, as Vsol does not only determine IDS, but also determines the pH levels, ion concentrations, and electric fields at the sensing area double layer accommodating the biomolecules. Therefore, inevitably, an IDS-Vsol sweep implies that the sensing area double layer is not in an electrochemical equilibrium, but rather in a continuous transient state as electrochemical potential gradients induce transient ion currents continuously affecting double layer hosting the biomolecules and the biological interactions. This challenge calls for a BioFET design which permits IDS sweeping from an off-state to an on-state while keeping Vsol constant and the double layer sensing area in electrochemical equilibrium. The study explores a BioFET design addressing this challenge by decoupling the solution potential from IDS gating. Specific and label-free sensing of ferritin in 0.5 μL drops of 1:100 diluted plasma is pursued. We show an excellent sensing performance once the solution potential and IDS gating are decoupled, with a limit-of-detection of 10 fg/ml, a dynamic range of 10 orders of magnitude in ferritin concentration and excellent linearity and sensitivity. In contrast, a poor sensing performance is recorded for the conventional Vsol sweep performed in parallel to the above. Extensive control measurements quantifying the non-specific signals are reported.
Collapse
Affiliation(s)
- Vijay Garika
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel
| | - Shubham Babbar
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel
| | - Soumadri Samanta
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel
| | - Sherina Harilal
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | | | - Ziv Rotfogel
- Ophthalmology Research Laboratory, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Evgeny Pikhay
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Inna Shehter
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Ayala Elkayam
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Muhammad Y Bashouti
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel; The Ilse-Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 8410501, Israel
| | - Barak Akabayov
- Department of Chemistry and Data Science Research Center, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Izhar Ron
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel
| | - Guy Hazan
- School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Pediatric Department D, Soroka University, Medical Center, Beer-Sheva, Israel
| | - Yakov Roizin
- Tower Semiconductor, PO Box 619, Migdal Haemek, Israel
| | - Gil Shalev
- School of Electrical Engineering, Ben-Gurion University of the Negev, Israel; The Ilse-Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
3
|
Shao W, Sorescu DC, Liu Z, Star A. Machine Learning Discrimination and Ultrasensitive Detection of Fentanyl Using Gold Nanoparticle-Decorated Carbon Nanotube-Based Field-Effect Transistor Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311835. [PMID: 38679787 DOI: 10.1002/smll.202311835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Indexed: 05/01/2024]
Abstract
The opioid overdose crisis is a global health challenge. Fentanyl, an exceedingly potent synthetic opioid, has emerged as a leading contributor to the surge in opioid-related overdose deaths. The surge in overdose fatalities, particularly due to illicitly manufactured fentanyl and its contamination of street drugs, emphasizes the urgency for drug-testing technologies that can quickly and accurately identify fentanyl from other drugs and quantify trace amounts of fentanyl. In this paper, gold nanoparticle (AuNP)-decorated single-walled carbon nanotube (SWCNT)-based field-effect transistors (FETs) are utilized for machine learning-assisted identification of fentanyl from codeine, hydrocodone, and morphine. The unique sensing performance of fentanyl led to use machine learning approaches for accurate identification of fentanyl. Employing linear discriminant analysis (LDA) with a leave-one-out cross-validation approach, a validation accuracy of 91.2% is achieved. Meanwhile, density functional theory (DFT) calculations reveal the factors that contributed to the enhanced sensitivity of the Au-SWCNT FET sensor toward fentanyl as well as the underlying sensing mechanism. Finally, fentanyl antibodies are introduced to the Au-SWCNT FET sensor as specific receptors, expanding the linear range of the sensor in the lower concentration range, and enabling ultrasensitive detection of fentanyl with a limit of detection at 10.8 fg mL-1.
Collapse
Affiliation(s)
- Wenting Shao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Dan C Sorescu
- United States Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania, 15236, USA
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Zhengru Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| |
Collapse
|
4
|
Sherard MM, Kaplan JS, Simpson JH, Kittredge KW, Leopold MC. Functionalized Gold Nanoparticles and Halogen Bonding Interactions Involving Fentanyl and Fentanyl Derivatives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:917. [PMID: 38869542 PMCID: PMC11173406 DOI: 10.3390/nano14110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Fentanyl (FTN) and synthetic analogs of FTN continue to ravage populations across the globe, including in the United States where opioids are increasingly being used and abused and are causing a staggering and growing number of overdose deaths each year. This growing pandemic is worsened by the ease with which FTN can be derivatized into numerous derivatives. Understanding the chemical properties/behaviors of the FTN class of compounds is critical for developing effective chemical detection schemes using nanoparticles (NPs) to optimize important chemical interactions. Halogen bonding (XB) is an intermolecular interaction between a polarized halogen atom on a molecule and e--rich sites on another molecule, the latter of which is present at two or more sites on most fentanyl-type structures. Density functional theory (DFT) is used to identify these XB acceptor sites on different FTN derivatives. The high toxicity of these compounds necessitated a "fragmentation" strategy where smaller, non-toxic molecules resembling parts of the opioids acted as mimics of XB acceptor sites present on intact FTN and its derivatives. DFT of the fragments' interactions informed solution measurements of XB using 19F NMR titrations as well as electrochemical measurements of XB at self-assembled monolayer (SAM)-modified electrodes featuring XB donor ligands. Gold NPs, known as monolayer-protected clusters (MPCs), were also functionalized with strong XB donor ligands and assembled into films, and their interactions with FTN "fragments" were studied using voltammetry. Ultimately, spectroscopy and TEM analysis were combined to study whole-molecule FTN interactions with the functionalized MPCs in solution. The results suggested that the strongest XB interaction site on FTN, while common to most of the drug's derivatives, is not strong enough to induce NP-aggregation detection but may be better exploited in sensing schemes involving films.
Collapse
Affiliation(s)
- Molly M. Sherard
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA; (M.M.S.); (J.S.K.); (J.H.S.)
| | - Jamie S. Kaplan
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA; (M.M.S.); (J.S.K.); (J.H.S.)
| | - Jeffrey H. Simpson
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA; (M.M.S.); (J.S.K.); (J.H.S.)
| | - Kevin W. Kittredge
- Department of Chemistry, Joan P. Brock School of Math and Natural Sciences, Virginia Wesleyan College, Virginia Beach, VA 23455, USA;
| | - Michael C. Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA; (M.M.S.); (J.S.K.); (J.H.S.)
| |
Collapse
|
5
|
Usman M, Baig Y, Nardiello D, Quinto M. How new nanotechnologies are changing the opioid analysis scenery? A comparison with classical analytical methods. Forensic Sci Res 2024; 9:owae001. [PMID: 38560581 PMCID: PMC10981550 DOI: 10.1093/fsr/owae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024] Open
Abstract
Opioids such as heroin, fentanyl, raw opium, and morphine have become a serious threat to the world population in the recent past, due to their increasing use and abuse. The detection of these drugs in biological samples is usually carried out by spectroscopic and/or chromatographic techniques, but the need for quick, sensitive, selective, and low-cost new analytical tools has pushed the development of new methods based on selective nanosensors, able to meet these requirements. Modern sensors, which utilize "next-generation" technologies like nanotechnology, have revolutionized drug detection methods, due to easiness of use, their low cost, and their high sensitivity and reliability, allowing the detection of opioids at trace levels in raw, pharmaceutical, and biological samples (e.g. blood, urine, saliva, and other biological fluids). The peculiar characteristics of these sensors not only have allowed on-site analyses (in the field, at the crime scene, etc.) but also they are nowadays replacing the gold standard analytical methods in the laboratory, even if a proper method validation is still required. This paper reviews advances in the field of nanotechnology and nanosensors for the detection of commonly abused opioids both prescribed (i.e. codeine and morphine) and illegal narcotics (i.e. heroin and fentanyl analogues).
Collapse
Affiliation(s)
- Muhammad Usman
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Yawar Baig
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
| | - Donatella Nardiello
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| |
Collapse
|
6
|
Cho H, Oh DE, Côté S, Lee CS, Kim TH. Orientation-Guided Immobilization of Probe DNA on swCNT-FET for Enhancing Sensitivity of EcoRV Detection. NANO LETTERS 2024; 24:1901-1908. [PMID: 38147528 DOI: 10.1021/acs.nanolett.3c03877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We present a novel approach that integrates electrical measurements with molecular dynamics (MD) simulations to assess the activity of type-II restriction endonucleases, specifically EcoRV. Our approach employs a single-walled carbon nanotube field-effect transistor (swCNT-FET) functionalized with the EcoRV substrate DNA, enabling the detection of enzymatic cleavage events. Notably, we leveraged the methylene blue (MB) tag as an "orientation guide" to immobilize the EcoRV substrate DNA in a specific direction, thereby enhancing the proximity of the DNA cleavage reaction to the swCNT surface and consequently improving the sensitivity in EcoRV detection. We conducted computational modeling to compare the conformations and electrostatic potential (ESP) of MB-tagged DNA with its MB-free counterpart, providing strong support for our electrical measurements. Both conformational and ESP simulations exhibited robust agreement with our experimental data. The inhibitory efficacy of the EcoRV inhibitor aurintricarboxylic acid (ATA) was also evaluated, and the selectivity of the sensing device was examined.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Da Eun Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sébastien Côté
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal H2 V 0B3, Canada
- Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme J7Z 4 V2, Canada
| | - Chang-Seuk Lee
- Department of Chemistry, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
7
|
Chieng A, Wan Z, Wang S. Recent Advances in Real-Time Label-Free Detection of Small Molecules. BIOSENSORS 2024; 14:80. [PMID: 38391999 PMCID: PMC10886562 DOI: 10.3390/bios14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The detection and analysis of small molecules, typically defined as molecules under 1000 Da, is of growing interest ranging from the development of small-molecule drugs and inhibitors to the sensing of toxins and biomarkers. However, due to challenges such as their small size and low mass, many biosensing technologies struggle to have the sensitivity and selectivity for the detection of small molecules. Notably, their small size limits the usage of labeled techniques that can change the properties of small-molecule analytes. Furthermore, the capability of real-time detection is highly desired for small-molecule biosensors' application in diagnostics or screening. This review highlights recent advances in label-free real-time biosensing technologies utilizing different types of transducers to meet the growing demand for small-molecule detection.
Collapse
Affiliation(s)
- Andy Chieng
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.C.); (Z.W.)
- School of Molecular Science, Arizona State University, Tempe, AZ 85287, USA
| | - Zijian Wan
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.C.); (Z.W.)
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (A.C.); (Z.W.)
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
8
|
Zeng Z, Islamov M, He Y, Day BA, Rosi NL, Wilmer CE, Star A. Size-Based Norfentanyl Detection with SWCNT@UiO-MOF Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1361-1369. [PMID: 38147588 PMCID: PMC10788826 DOI: 10.1021/acsami.3c17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Single-walled carbon nanotube (SWCNT)@metal-organic framework (MOF) field-effect transistor (FET) sensors generate a signal through analytes restricting ion diffusion around the SWCNT surface. Four composites made up of SWCNTs and UiO-66, UiO-66-NH2, UiO-67, and UiO-67-CH3 were synthesized to explore the detection of norfentanyl (NF) using SWCNT@MOF FET sensors with different pore sizes. Liquid-gated FET devices of SWCNT@UiO-67 showed the highest sensing response toward NF, whereas SWCNT@UiO-66 and SWCNT@UiO-66-NH2 devices showed no sensitivity improvement compared to bare SWCNT. Comparing SWCNT@UiO-67 and SWCNT@UiO-67-CH3 indicated that the sensing response is modulated by not only the size-matching between NF and MOF channel but also NF diffusion within the MOF channel. Additionally, other drug metabolites, including norhydrocodone (NH), benzoylecgonine (BZ), and normorphine (NM) were tested with the SWCNT@UiO-67 sensor. The sensor was not responding toward NH and or BZ but a similar sensing result toward NM because NM has a similar size to NF. The SWCNT@MOF FET sensor can avoid interference from bigger molecules but sensor arrays with different pore sizes and chemistries are needed to improve the specificity.
Collapse
Affiliation(s)
- Zidao Zeng
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Meiirbek Islamov
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yiwen He
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian A. Day
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christopher E. Wilmer
- Department
of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Clinical
and Translational Science Institute, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Clinical
and Translational Science Institute, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|