1
|
Xiao T, Yu Z, Yang H, You J, Wu X. Marine polysaccharides hydrogel with encapsulated mesalazine for the treatment of ulcerative colitis: Integrative effects on inflammation, microbiota, and mucosal repair. Colloids Surf B Biointerfaces 2025; 253:114722. [PMID: 40262307 DOI: 10.1016/j.colsurfb.2025.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Ulcerative colitis is a chronic non-specific inflammatory disease of the intestine that significantly impacts patient quality of life. This study introduces a OF/CC/SM hydrogel containing oxidized fucoidan (OF), carboxymethyl chitosan (CC), and silk sericin-stabilized mesalazine (SM), designed for rectal administration to target mesalazine delivery specifically to the colon. The OF/CC/SM hydrogel demonstrated good biocompatibility (cell compatibility > 99 %), injectability, and adhesion strength, ensuring effective mesalazine retention and release. In vitro assays confirmed the hydrogel's antioxidant and anti-inflammatory properties, which were further validated in vivo using a mouse model of ulcerative colitis. Rectal administration of OF/CC/SM hydrogel significantly relieved weight loss, lowered disease activity index scores, and prevented intestinal shortening associated with dextran sulfate sodium (DSS) treatment. The hydrogel decreased the expression of proinflammatory cytokines (e.g., tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)), while normalized the level of biomarkers (e.g., inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO), catalase (CAT), and malondialdehyde (MDA)). Additionally, the OF/CC/SM hydrogel modulated the gut microbiota, increasing beneficial bacteria while decreasing potentially harmful species. Histopathological analysis revealed a reduction in inflammatory infiltration and improved mucosal architecture. Additionally, in vivo imaging studies confirmed sustained presence of OF/CC/SM hydrogel in the intestines following rectal administration, highlighting its potential for enhanced therapeutic efficacy in treating ulcerative colitis.
Collapse
Affiliation(s)
- Teng Xiao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Zhenxin Yu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Haomin Yang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Jun You
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Youyi Road 368, Wuhan 430062, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| |
Collapse
|
2
|
Jiang L, Li J, Yang R, Chen S, Wu Y, Jin Y, Wang J, Weng Q, Wang J. Effect of hydrogel drug delivery system for treating ulcerative colitis: A preclinical meta-analysis. Int J Pharm 2024; 659:124281. [PMID: 38802026 DOI: 10.1016/j.ijpharm.2024.124281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Hydrogel drug delivery systems (DDSs) for treating ulcerative colitis (UC) have garnered attention. However, there is a lack of meta-analysis summarizing their effectiveness. Therefore, this study aimed to conduct a meta-analysis of pre-clinical evidence comparing hydrogel DDSs with free drug administration. Subgroup analyses were performed based on hydrogel materials (polysaccharide versus non-polysaccharide) and administration routes of the hydrogel DDSs (rectal versus oral). The outcome indicators included colon length, histological scores, tumor necrosis factor-α (TNF-α), zonula occludens protein 1(ZO-1), and area under the curve (AUC). The results confirmed the therapeutic enhancement of the hydrogel DDSs for UC compared with the free drug group. Notably, no significant differences were found between polysaccharide and non-polysaccharide materials, however, oral administration was found superior regarding TNF-α and AUC. In conclusion, oral hydrogel DDSs can serve as potential excellent dosage forms in oral colon -targeting DDSs, and in the design of colon hydrogel delivery systems, polysaccharides do not show advantages compared with other materials.
Collapse
Affiliation(s)
- Lan Jiang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jia Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Runkun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shunpeng Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yongjun Wu
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuanyuan Jin
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang 312500, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; Beijing Life Science Academy, Beijing 102200, China.
| |
Collapse
|
3
|
Liu T, Sun W, Mu C, Zhang X, Xu D, Yan Q, Luan S. Bionic double-crosslinked hydrogel of poly (γ-glutamic acid)/poly (N-(2-hydroxyethyl) acrylamide) with ultrafast gelling process and ultrahigh burst pressure for emergency rescue. Int J Biol Macromol 2024; 271:132360. [PMID: 38810432 DOI: 10.1016/j.ijbiomac.2024.132360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/04/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Injectable adhesive hydrogels combining rapid gelling with robust adhesion to wet tissues are highly required for fast hemostasis in surgical and major trauma scenarios. Inspired by the cross-linking mechanism of mussel adhesion proteins, we developed a bionic double-crosslinked (BDC) hydrogel of poly (γ-glutamic acid) (PGA)/poly (N-(2-hydroxyethyl) acrylamide) (PHEA) fabricated through a combination of photo-initiated radical polymerization and hydrogen bonding cross-linking. The BDC hydrogel exhibited an ultrafast gelling process within 1 s. Its maximum adhesion strength to wet porcine skin reached 254.5 kPa (9 times higher than that of cyanoacrylate (CA) glue) and could withstand an ultrahigh burst pressure of 626.4 mmHg (24 times higher than that of CA glue). Notably, the BDC hydrogel could stop bleeding within 10 s from a rat liver incision 10 mm long and 5 mm deep. The wound treated with the BDC hydrogel healed faster than the control groups, underlining the potential for emergency rescue and wound care scenarios.
Collapse
Affiliation(s)
- Tingwu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China
| | - Wen Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China
| | - Changjun Mu
- Shandong Weigao Blood Purification Products Company Limited, Weihai 264210, PR China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China.
| |
Collapse
|
4
|
Jiang Y, Zhu C, Ma X, Fan D. Janus hydrogels: merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater Sci 2024; 12:2504-2520. [PMID: 38529571 DOI: 10.1039/d3bm01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
5
|
Gui J, Zhu Y, Chen X, Gong T, Zhang Z, Yu R, Fu Y. Systemic platelet inhibition with localized chemotherapy by an injectable ROS-scavenging gel against postsurgical breast cancer recurrence and metastasis. Acta Biomater 2024; 177:388-399. [PMID: 38307476 DOI: 10.1016/j.actbio.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Early solid tumors benefit from surgical resection, but residual stubborn microtumors, pro-inflammatory microenvironment and activated platelets at the postoperative wound site are prone to recurrence and metastasis, resulting in poor prognosis. Here, we developed a dual-pronged strategy consisting of (i) in-situ forming ROS-scavenging gels loaded with anticancer drugs at the postoperative wound site to improve the tumor microenvironment and inhibit the recurrence of residual microtumors after orthotopic surgery, and (ii) systemic administration of clopidegrol via albumin nanoparticles for inhibiting activated platelets in the circulation thus inhibiting tumor remote migration. In a mouse model of postoperative recurrence and metastasis of orthotopic 4T1 breast cancer, the dual-pronged strategy greatly inhibited postoperative orthotopic tumor recurrence and reduced lung metastasis. This work provides an effective strategy for the postoperative intervention and treatment of solid tumors to inhibit postoperative tumor recurrence and metastasis, which has the potential to improve the prognosis and survival of patients with postoperative solid tumors. STATEMENT OF SIGNIFICANCE: Early-stage solid tumors benefit from surgical resection. However, the presence of residual microtumors, pro-inflammatory tumor microenvironment, and activated platelets at the postoperative wound site lead to recurrence and metastasis, ultimately resulting in poor prognosis. Here, we have devised a dual-pronged approach that includes (i) in-situ forming ROS-scavenging gels loaded with anticancer drugs (TM@Gel) at the wound site after surgery to enhance the tumor microenvironment (TME) and hinder the reappearance of residual microtumors, and (ii) systemic administration of clopidegrol through albumin nanoparticles (HHP) for inhibiting activated platelets in the circulation thus impeding tumor distant migration. This work provides a viable option for postoperative intervention and treatment of solid tumors to suppress postoperative tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Jiajia Gui
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yueting Zhu
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Chen
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yao Fu
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Kováč J, Priščáková P, Gbelcová H, Heydari A, Žiaran S. Bioadhesive and Injectable Hydrogels and Their Correlation with Mesenchymal Stem Cells Differentiation for Cartilage Repair: A Mini-Review. Polymers (Basel) 2023; 15:4228. [PMID: 37959908 PMCID: PMC10648146 DOI: 10.3390/polym15214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Injectable bioadhesive hydrogels, known for their capacity to carry substances and adaptability in processing, offer great potential across various biomedical applications. They are especially promising in minimally invasive stem cell-based therapies for treating cartilage damage. This approach harnesses readily available mesenchymal stem cells (MSCs) to differentiate into chondrocytes for cartilage regeneration. In this review, we investigate the relationship between bioadhesion and MSC differentiation. We summarize the fundamental principles of bioadhesion and discuss recent trends in bioadhesive hydrogels. Furthermore, we highlight their specific applications in conjunction with stem cells, particularly in the context of cartilage repair. The review also encompasses a discussion on testing methods for bioadhesive hydrogels and direct techniques for differentiating MSCs into hyaline cartilage chondrocytes. These approaches are explored within both clinical and laboratory settings, including the use of genetic tools. While this review offers valuable insights into the interconnected aspects of these topics, it underscores the need for further research to fully grasp the complexities of their relationship.
Collapse
Affiliation(s)
- Ján Kováč
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Petra Priščáková
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Gbelcová
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Abolfazl Heydari
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Stanislav Žiaran
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbová 5, 833 05 Bratislava, Slovakia
| |
Collapse
|