1
|
Lan W, Wei B, Jin Y, Xu S, Zhou H, Wu Y, Liu Q, Chen P, Wang J, Zhao X, Meng H, Liu L, Wang D, Huang H, Wei Y, Zhu Q, Yu Y. Efficient Photocatalytic Synthesis of Hydrogen Peroxide Facilitated by Triptycene-Based 3D Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501327. [PMID: 40095337 DOI: 10.1002/smll.202501327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Covalent organic frameworks (COFs) are widely studied for hydrogen peroxide (H₂O₂) photosynthesis, with 3D COFs standing out for their porous structures and chemical stability. However, the difficult preparation of 3D COFs and the low efficiency in separating photo-generated electrons and holes (e- and h+) limits the efficient production of H2O2. In this study, two kinds of [6+3] 3D COFs (XJU-1, XJU-2) with significant charge separation, achieving record-breaking H₂O₂ photocatalysis rates of 34 777 and 11 922 µmol g⁻¹ h⁻¹, respectively. XJU-1's superior efficiency stems from its larger pores, enhancing material transport and oxygen (O2) activation. Experimental and theoretical studies have demonstrated that triptycene monomers achieve significant charge separation toward triazine via imine bonds. Moreover, the dimer's smaller singlet-triplet energy gap (∆ES-T) and triptycene's orthogonal configuration enhance singlet oxygen (1O2) production, enabling multiple H2O2 generation pathways. Ultimately, through the oxygen reduction reaction (ORR) pathway, rapid generation of H2O2 can be achieved at multiple catalytic sites. XJU-1 mainly follows a mixed pathway involving 1e--ORR and 2e--ORR, and XJU-2 primarily follows the 2e--ORR pathway, respectively. These open the door of triptycene-based 3D COFs applied in continuous, efficient, and stable photosynthesis of H2O2.
Collapse
Affiliation(s)
- Wei Lan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Banglu Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yongming Jin
- Analysis and Testing Center, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Shenglei Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Huixin Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yiran Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Qiu Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Peng Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Junkai Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Xiaoyu Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Lang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Duozhi Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Haibao Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University, Beijing, 100084, P. R. China
| | - Quan Zhu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yuming Yu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
2
|
Xiang G, Xu W, Zhuge W, Huang Q, Zhang C, Peng J. A Tröger's base-linked aluminium phthalocyanine polymer for discriminative electrochemical sensing of the antibiotic isoniazid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1012-1020. [PMID: 38304962 DOI: 10.1039/d3ay02298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Isoniazid is a first-line drug used to treat tuberculosis. However, its excessive use can lead to serious adverse effects. Thus, strict monitoring of the isoniazid levels in medications and human systems is required. In this study, a new polymer (AlPc-TB POP) containing a metal phthalocyanine and Tröger's base was synthesized and explored as an electrocatalyst for the oxidation of isoniazid. The results indicated that the polymer is an excellent electron-transfer medium for isoniazid oxidation. The AlPc-TB POP-based sensor quantified isoniazid in the linear range of 0.1-130 μM, with a detection limit of 0.0185 μM. The response of the developed sensor to isoniazid was reproducible and stable. Furthermore, this method can accurately determine isoniazid levels by ignoring the influence of common interfering species in tablets and biological samples. This study contributes to the development of nitrogen-rich porous organic polymers and offers a novel strategy for addressing challenges in disease therapeutic efficacy and public safety monitoring.
Collapse
Affiliation(s)
- Gang Xiang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Wensi Xu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Wenfeng Zhuge
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Qing Huang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Cuizhong Zhang
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| | - Jinyun Peng
- College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo, 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Normal University for Nationalities, Chongzuo, 532200, China
| |
Collapse
|
3
|
Guo F, Ma H, Yang BB, Wang Z, Meng XG, Bu JH, Zhang C. Rigidity with Flexibility: Porous Triptycene Networks for Enhancing Methane Storage. Polymers (Basel) 2024; 16:156. [PMID: 38201822 PMCID: PMC10780442 DOI: 10.3390/polym16010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
In the pursuit of advancing materials for methane storage, a critical consideration arises given the prominence of natural gas (NG) as a clean transportation fuel, which holds substantial potential for alleviating the strain on both energy resources and the environment in the forthcoming decade. In this context, a novel approach is undertaken, employing the rigid triptycene as a foundational building block. This strategy is coupled with the incorporation of dichloromethane and 1,3-dichloropropane, serving as rigid and flexible linkers, respectively. This combination not only enables cost-effective fabrication but also expedites the creation of two distinct triptycene-based hypercrosslinked polymers (HCPs), identified as PTN-70 and PTN-71. Surprisingly, despite PTN-71 manifesting an inferior Brunauer-Emmett-Teller (BET) surface area when compared to the rigidly linked PTN-70, it showcases remarkably enhanced methane adsorption capabilities, particularly under high-pressure conditions. At a temperature of 275 K and a pressure of 95 bars, PTN-71 demonstrates an impressive methane adsorption capacity of 329 cm3 g-1. This exceptional performance is attributed to the unique flexible network structure of PTN-71, which exhibits a pronounced swelling response when subjected to elevated pressure conditions, thus elucidating its superior methane adsorption characteristics. The development of these advanced materials not only signifies a significant stride in the realm of methane storage but also underscores the importance of tailoring the structural attributes of hypercrosslinked polymers for optimized gas adsorption performance.
Collapse
Affiliation(s)
- Fei Guo
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan 430200, China;
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Zhen Wang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan 430200, China;
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Xiang-Gao Meng
- School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian-Hua Bu
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| |
Collapse
|
4
|
Gao C, Guan X, Zhang M, Hu H, Chen L, Sun C, Zhang C, Du Y, Hu B. Enhancing the Iodine Adsorption Capacity of Pyrene-Based Covalent Organic Frameworks by Regulating the Pore Environment. Macromol Rapid Commun 2023; 44:e2300311. [PMID: 37469031 DOI: 10.1002/marc.202300311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Regulating of pore environment is an efficient way to improve the performance of covalent organic frameworks (COFs) for specific application requirements. Herein, the design and synthesis of two pyrene-based 2D COFs with -H or -Me substituents, TFFPy-PPD-COF and TFFPy-TMPD-COF are reported. Both of them show long order structure and high porosity, in which TFFPy-PPD-COF displays a larger pore volume and bigger BET surface area (2587 m2 g-1 , 1.17 cm3 g-1 ). Interestingly, TFPPy-TMPD-COF exhibits a much higher vapor iodine capacity (4.8 g g-1 ) than TFPPy-PPD-COF (2.9 g g-1 ), in contrast to their pore volume size. By using multiple techniques, the better performance of TFPPy-TMPD-COF in iodine capture is ascribed to the altered pore environment by introducing methyl groups, which contributes to the formation of polyiodide anions and enhances the interactions between the frameworks and iodine. These results will be helpful for understanding the effect of pore environment in COFs for iodine uptake and constructing novel structure with high iodine capture performance.
Collapse
Affiliation(s)
- Chao Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xuhui Guan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Menghui Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Haoran Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chengguo Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yang Du
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bingcheng Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|