1
|
Zhao T, Tan Y, Li Y, Wang X. Ionic fuel-powered hydrogel actuators for soft robotics. J Colloid Interface Sci 2025; 677:739-749. [PMID: 39121658 DOI: 10.1016/j.jcis.2024.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
HYPOTHESIS Hydrogel actuators powered by chemical fuels are pivotal in autonomous soft robotics. Nevertheless, chemical waste accumulation caused by chemical fuels hampers the development of programmable and reusable hydrogel actuating systems. We propose the concept of ionic fuel-powered soft robotics which are constructed by programmable salt-responsive actuators and use waste-free ionic fuels. EXPERIMENTS Herein, soft hydrogel actuators were developed by orchestrating the Janus bilayer hydrogels' capacity for swelling and shrinking. Decomposable and easily removable ionic fuels were applied to power the actuators. Swelling tests were used to evaluate the deformability of the hydrogels. Tensile tests were performed to investigate the modulus of the hydrogels. The bonded interface composed of the interpenetrating polymer chains from both hydrogel layers bilayer was evidenced by the optical microscopy and scanning electron microscopy. The ionic conductivities of solutions were determined by a conductivity meter. Furthermore, a range of biomimetic soft robots with various shapes and asymmetrical structures have been designed and fabricated to execute complex functions. FINDINGS The programmable actuators powered by ionic fuel exhibit adjustable bending orientations, amplitudes, and durations, along with consistent cyclic actuations enabled by replenishment of the fuel without noticeable loss in performance. Many life-like programmable soft robotic systems were designed, indicating spatiotemporally controllable functions.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China.
| |
Collapse
|
2
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
3
|
Wang L, Meng Y, Wang X. Sustainable Supramolecular Polymers. Chempluschem 2024; 89:e202300694. [PMID: 38355904 DOI: 10.1002/cplu.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Polymer waste is a pressing issue that requires innovative solutions from the scientific community. As a beacon of hope in addressing this challenge, the concept of sustainable supramolecular polymers (SSPs) emerges. This article discusses challenges and efforts in fabricating SSPs. Addressing the trade-offs between mechanical performance and sustainability, the ultra-tough and multi-recyclable supramolecular polymers are fabricated via tailoring mismatched supramolecular interactions. Additionally, the healing of kinetically inert polymer materials is realized through transient regulation of the interfacial reactivity. Furthermore, a possible development trajectory for SSPs is proposed, and the transient materials can be regarded as the next generation in this field. The evolution of SSPs promises to be a pivotal stride towards a regenerative economy, sparking further exploration and innovation in the realm of sustainable materials.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuwen Meng
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
4
|
Ye AL, Zhang H, Wu B, Lu H, Si M, Zhang K, Chen T. Hydrogel Rivet with Unidirectional Shape Morphing for Flexible Mechanical Assembly. Macromol Rapid Commun 2024; 45:e2300586. [PMID: 37972640 DOI: 10.1002/marc.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Integrating diverse materials and functions into highly additive produce has piqued global interest due to the increasing demands of intelligent soft robotics. Nevertheless, existing assembly techniques, especially supramolecular assembly which heavily rely on precise chemical design and specific recognition, may prove inadequate when confronted with diverse external demands. Inspired by the traditional mechanical assembly, rivet connection, herein, a thermo-responsive hydrogel with unidirectional shape-morphing is fabricated and a stable mechanical assembly is constructed by emulating the rivet connection mechanism. This system employed poly(acrylamide-co-acrylic acid) [P(AAm-co-AAc)] to induce continuous swelling and hexylamine-modified polyvinyl alcohol (PVA-C6) as a molecular switch to control the swelling process. The hydrogel rivet, initially threaded through pre-fabricated hollows in two components. Subsequently, upon the disassociation of alkane chains the molecular switch would activate, inducing swelling and stable mechanical assembly via anchor structures. Moreover, to enhance the assembly strength, knots are introduced to enhance assembly strength, guiding localized stress release for programmed deformations. Additionally, the system can be remotely controlled using near-infrared light (NIR) by incorporating photo-thermal nanoparticles. This work presents a universal and efficient strategy for constructing stable mechanical assemblies without compromising overall softness, offering significant potential for the fabrication of integrated soft robots.
Collapse
Affiliation(s)
- April L Ye
- Ningbo Hanvos Kent School, Ningbo, 315200, China
- Georgia School Ningbo, Ningbo, 315000, China
| | - Haozhe Zhang
- Ningbo Hanvos Kent School, Ningbo, 315200, China
| | - Baoyi Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Huanhuan Lu
- College of Chemical Engineering, Ningbo Polytechnic, Ningbo, 315800, China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Kaihang Zhang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
5
|
Wang Z, Xiao J, Zhao T, Zhang C, Wang L, He N, Kong Q, Wang X. Transient regulation of gel properties by chemical reaction networks. Chem Commun (Camb) 2023; 59:9818-9831. [PMID: 37497715 DOI: 10.1039/d3cc02479b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Transient regulation of gel properties by chemical reaction networks (CRNs) represents an emerging and effective strategy to program or temporally control the structures, properties, and functions of gel materials in a self-regulated manner. CRNs provide significant opportunities to construct complex or sustainable gels with excellent dynamic features, thus expanding the application scope of these materials. CRN-based methods for transiently regulating the gel properties are receiving increasing attention, and the related fields are worth further studying. This feature article focuses on the CRN-mediated transient regulation of six properties of gels, which are transient gelation, transient liquefaction of gels, transient assembly of macroscopic gels, temporary actuation of gels, transient healing ability of kinetically inert gels, and cascade reaction-based self-reporting of external stimuli. Recent advances that showcase the six properties of gels controlled by CRNs are featured, the characterization and structural elucidation of gels are detailed, and the significance, achievements, and expectations of this field are discussed. The strategy of transient regulation of gel properties via CRNs is potentially useful for building the next generation of adaptive functional materials.
Collapse
Affiliation(s)
- Zhongrui Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jing Xiao
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Ting Zhao
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Chunxiao Zhang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Luping Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Nan He
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Qingming Kong
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials and Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|