1
|
Liu J, Xia X, Zhang J, Zhang S, Yang B, Xiao Y, Yu Y, Xie W, Ren Y, Chen J, Hu W, Yang H. Dynamic Programme Locking of Isomerization Behavior of Molecular Switch in Liquid Crystal Elastomers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500899. [PMID: 40059597 DOI: 10.1002/smll.202500899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/26/2025] [Indexed: 04/17/2025]
Abstract
The reversible isomerization behavior of molecular switches in liquid crystal elastomers (LCEs) usually only can be monotonically repeated, because the molecular motion environment is the same for each isomerization cycle in a permanently cross-linked polymer network. Therefore, achieving a tunable photostationary state (PSS) in the same LCE material system is a significant challenge. Herein, a spiropyran-based material (SPBM) as the molecular switch is introduced into a LCE system, which constructed a typical photo-responsive material with reversible isomerization behavior. Furthermore, dynamic cross-linked polymer networks via diselenide bonds endow the SPBM in this system with a tunable molecular motion environment, which switches freely or restrictedly depending on the size of the free volume. Thus, the molecular switch can endow the LCE with programmable photo-response, and a program locking or unlocking is enabled by tuning the free volume. This post-programming locking (PPL) strategy may offer a new sight for promoting the higher controllability of the stimulus-responsive behavior of the smart materials.
Collapse
Affiliation(s)
- Jiale Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xinzhao Xia
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jianying Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Shuoning Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Bo Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yixian Xiao
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yinuo Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wenting Xie
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yunxiao Ren
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jiajun Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Wei Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| |
Collapse
|
2
|
Xu Z, Zhu Y, Ai Y, Zhou D, Wu F, Li C, Chen L. Programmable, Self-Healable, and Photochromic Liquid Crystal Elastomers Based on Dynamic Hindered Urea Bonds for Biomimetic Flowers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400520. [PMID: 38733234 DOI: 10.1002/smll.202400520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Indexed: 05/13/2024]
Abstract
Recently, researchers have been exploring the use of dynamic covalent bonds (DCBs) in the construction of exchangeable liquid crystal elastomers (LCEs) for biomimetic actuators and devices. However, a significant challenge remains in achieving LCEs with both excellent dynamic properties and superior mechanical strength and stability. In this study, a diacrylate-functionalized monomer containing dynamic hindered urea bonds (DA-HUB) is employed to prepare exchangeable LCEs through a self-catalytic Michael addition reaction. By incorporating DA-HUB, the LCE system benefits from DCBs and hydrogen bonding, leading to materials with high mechanical strength and a range of dynamic properties such as programmability, self-healing, and recyclability. Leveraging these characteristics, bilayer LCE actuators with controlled reversible thermal deformation and outstanding dimensional stability are successfully fabricated using a simple welding method. Moreover, a biomimetic triangular plum, inspired by the blooming of flowers, is created to showcase reversible color and shape changes triggered by light and heat. This innovative approach opens new possibilities for the development of biomimetic and smart actuators and devices with multiple functionalities.
Collapse
Affiliation(s)
- Zhentian Xu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangyang Zhu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yun Ai
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunquan Li
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lie Chen
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
3
|
Yang G, Dong L, Ren M, Cui B, Yuan X, Wang X, Li Y, Li W, Qiao G, Shao Y, Li W, Wang X, Xu P, Fang H, Di J, Li Q. Coiled Carbon Nanotube Fibers Sheathed by a Reinforced Liquid Crystal Elastomer for Strong and Programmable Artificial Muscles. NANO LETTERS 2024; 24:9608-9616. [PMID: 39012768 DOI: 10.1021/acs.nanolett.4c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.
Collapse
Affiliation(s)
- Guang Yang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lizhong Dong
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ming Ren
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bo Cui
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaojie Yuan
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaobo Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuxin Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guanlong Qiao
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yunfeng Shao
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Weiwei Li
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaona Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Panpan Xu
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongbin Fang
- Institute of AI and Robotics, Fudan University, Shanghai 200433, China
| | - Jiangtao Di
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qingwen Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
4
|
Schlafmann KR, Alahmed MS, Pearl HM, White TJ. Tunable and Switchable Thermochromism in Cholesteric Liquid Crystalline Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669605 DOI: 10.1021/acsami.3c18367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Thermochromic materials have found widespread commercial use in packaging as temperature indicators. Often, these products utilize leuco dyes that are mixed into conventional polymeric resins to prepare coatings or films that exhibit temperature-dependent color change. Here, we consider a distinctive approach to thermochromism via the selective reflection of liquid crystalline elastomers that retain the helicoidal structure of the cholesteric phase (CLCEs). Upon heating, the order of the CLCEs reduces and approaches zero, resulting in a change in birefringence as well as material thickness, both of which manifest as changes in the selective reflection to heating. This examination systematically prepares CLCEs capable of reversible thermochromic response as a function of cross-link density and liquid crystalline composition. A particular focus of this examination is the preparation of CLCEs composed of chiral and achiral liquid crystalline monomers that reduce the strength of the mesogen-mesogen interaction and accordingly reduce the nematic-isotropic transition temperature. The low birefringence of some of the CLCE compositions facilitates thermochromic reflection tuning, followed by switching.
Collapse
Affiliation(s)
- Kyle R Schlafmann
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mohammed S Alahmed
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Harrison M Pearl
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder Colorado 80303, United States
| |
Collapse
|