1
|
Kissling VM, Eitner S, Bottone D, Cereghetti G, Wick P. Systematic Comparison of Commercial Uranyl-Alternative Stains for Negative- and Positive-Staining Transmission Electron Microscopy of Organic Specimens. Adv Healthc Mater 2025:e2404870. [PMID: 40302369 DOI: 10.1002/adhm.202404870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Negative- and positive-staining transmission electron microscopy (ns/psTEM) is a cornerstone of research and diagnostics, enabling nanometer-resolution analysis of organic specimens from nanoparticles to cells without requiring costly cryo-equipment. For nearly 70 years, uranyl salts like uranyl acetate (UA) have been the gold-standard ns/psTEM-stains. However, mounting safety concerns due to their high toxicity and radioactivity have led to stricter regulations and expensive licensing requirements. Consequently, there is an urgent global demand for safer, more sustainable stains that deliver uranyl-comparable, high-quality ns/psTEM. Here, the commercially available stain-alternatives UranyLess, UAR, UA-Zero, PTA, STAIN 77, Nano-W, NanoVan, and lead citrate are systematically assessed against UA. The stains are evaluated regarding their contrast, resolution, stain-distribution, and ease-of-use in ns/psTEM across a diverse sample set, including polymethylmethacrylate-nanoplastics, phosphatidylcholine-liposomes, Influenza-A viruses, globular ferritin, fibrillar pyruvate kinase amyloids, and human lung-carcinoma cell-sections. It is shown that for this variety of samples, a ready-to-use uranyl-alternative is commercially available with comparable or even superior ns/psTEM-performance to UA using an efficient staining-protocol. Furthermore, the GUIDE4U tool is developed for the fast identification of the appropriate uranyl-replacements for each sample of interest, saving ns/psTEM-users time and costs while ensuring excellent staining results for ultrastructural analysis, thereby further catalyzing the use of safer stains.
Collapse
Affiliation(s)
- Vera M Kissling
- Nanomaterials in Health Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, 9014, Switzerland
| | - Stephanie Eitner
- Nanomaterials in Health Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, 9014, Switzerland
| | - Davide Bottone
- Nanomaterials in Health Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, 9014, Switzerland
| | - Gea Cereghetti
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Peter Wick
- Nanomaterials in Health Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, 9014, Switzerland
| |
Collapse
|
2
|
Tagaras N, Song H, Sahar S, Tong W, Mao Z, Buerki‐Thurnherr T. Safety Landscape of Therapeutic Nanozymes and Future Research Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407816. [PMID: 39445544 PMCID: PMC11633477 DOI: 10.1002/advs.202407816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Oxidative stress and inflammation are at the root of a multitude of diseases. Treatment of these conditions is often necessary but current standard therapies to fight excessive reactive oxygen species (ROS) and inflammation are often ineffective or complicated by substantial safety concerns. Nanozymes are emerging nanomaterials with intrinsic enzyme-like properties that hold great promise for effective cancer treatment, bacterial elimination, and anti-inflammatory/anti-oxidant therapy. While there is rapid progress in tailoring their catalytic activities as evidenced by the recent integration of single-atom catalysts (SACs) to create next-generation nanozymes with superior activity, selectivity, and stability, a better understanding and tuning of their safety profile is imperative for successful clinical translation. This review outlines the current applied safety assessment approaches and provides a comprehensive summary of the safety knowledge of therapeutic nanozymes. Overall, nanozymes so far show good in vitro and in vivo biocompatibility despite considerable differences in their composition and enzymatic activities. However, current safety investigations mostly cover a limited set of basic toxicological endpoints, which do not allow for a thorough and deep assessment. Ultimately, remaining research gaps that should be carefully addressed in future studies are highlighted, to optimize the safety profile of therapeutic nanozymes early in their pre-clinical development.
Collapse
Affiliation(s)
- Nikolaos Tagaras
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Haihan Song
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Shafaq Sahar
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Zhengwei Mao
- College of Chemical and Biological EngineeringMOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University866 Yuhangtang RdHangzhou310058China
| | - Tina Buerki‐Thurnherr
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. Gallen9014Switzerland
| |
Collapse
|
3
|
Gerken LRH, Beckers C, Brugger BA, Kissling VM, Gogos A, Wee S, Lukatskaya MR, Schiefer H, Plasswilm L, Pruschy M, Herrmann IK. Catalytically Active Ti-Based Nanomaterials for Hydroxyl Radical Mediated Clinical X-Ray Enhancement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406198. [PMID: 39501581 DOI: 10.1002/advs.202406198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/02/2024] [Indexed: 12/19/2024]
Abstract
Nanoparticle radioenhancement offers a promising strategy for augmenting radiotherapy by locally increasing radiation damage to tumor tissue. While past research has predominantly focused on nanomaterials with high atomic numbers, such as Au and HfO2, recent work has revealed that their radioenhancement efficacy decreases considerably when using clinically relevant megavoltage X-rays as opposed to the orthovoltage X-rays typically employed in research settings. Here, radiocatalytically active Ti-based nanomaterials for clinical X-ray therapy settings are designed. A range of candidate materials, including TiO2 (optionally decorated with Ag or Pt nanoseeds), Ti-containing metal-organic frameworks (MOFs), and 2D Ti-based carbides known as Ti3C2Tx MXenes, is investigated. It is demonstrated that these titanium-based candidates remain consistently performant across a wide energy spectrum, from orthovoltage to megavoltage. This sustained performance is attributed to the catalytic generation of reactive oxygen species, moving beyond the simple physical dose enhancements associated with photoelectric effects. Beyond titania, emergent materials like titanium-based MOFs and MXenes exhibit encouraging results, achieving dose-enhancement factors of up to three in human soft tissue sarcoma cells. Notably, these enhancements are absent in healthy human fibroblast cells under similar conditions of particle uptake, underscoring the selective impact of titanium-based materials in augmenting radiotherapy across the clinically relevant spectral range.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Claire Beckers
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Beatrice A Brugger
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Vera M Kissling
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Shianlin Wee
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Maria R Lukatskaya
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Hans Schiefer
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, St. Gallen, CH-9007, Switzerland
| | - Ludwig Plasswilm
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, St. Gallen, CH-9007, Switzerland
- Department of Radiation Oncology, Inselspital University Hospital, Bern, 3010, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- The Ingenuity Lab, Balgrist University Hospital, Forchstrasse 340, Zurich, 8008, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| |
Collapse
|
4
|
Encinas-Gimenez M, Martin-Duque P, Martín-Pardillos A. Cellular Alterations Due to Direct and Indirect Interaction of Nanomaterials with Nucleic Acids. Int J Mol Sci 2024; 25:1983. [PMID: 38396662 PMCID: PMC10889090 DOI: 10.3390/ijms25041983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Deoxyribonucleic acid (DNA) represents the main reservoir of genetic information in the cells, which is why it is protected in the nucleus. Entry into the nucleus is, in general, difficult, as the nuclear membrane is a selective barrier to molecules longer than 40 kDa. However, in some cases, the size of certain nanoparticles (NPs) allows their internalization into the nucleus, thus causing a direct effect on the DNA structure. NPs can also induce indirect effects on DNA through reactive oxygen species (ROS) generation. In this context, nanomaterials are emerging as a disruptive tool for the development of novel therapies in a broad range of biomedical fields; although their effect on cell viability is commonly studied, further interactions with DNA or indirect alterations triggered by the internalization of these materials are not always clarified, since the small size of these materials makes them perfectly suitable for interaction with subcellular structures, such as the nucleus. In this context, and using as a reference the predicted interactions presented in a computational model, we describe and discuss the observed direct and indirect effects of the implicated nanomaterials on DNA.
Collapse
Affiliation(s)
- Miguel Encinas-Gimenez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.E.-G.); (A.M.-P.)
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Martin-Duque
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Centro de Terapias Avanzadas, Instituto de Salud Carlos lll, 28222 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.E.-G.); (A.M.-P.)
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|