1
|
de Matos PA, de Oliveira HCN, da Silva MNT, Nossol E, Tsubone TM. Metal hexacyanoferrates in photodynamic and photothermal therapies. Biophys Rev 2025; 17:561-577. [PMID: 40376400 PMCID: PMC12075732 DOI: 10.1007/s12551-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/05/2025] [Indexed: 05/18/2025] Open
Abstract
Photodynamic therapy (PDT) involves a reaction between photosensitizers (PS) and oxygen (O2) to generate cytotoxic reactive oxygen species (ROS), which effectively eliminate undesired cells. Compared to conventional treatments like surgery, radiation, and chemotherapy, PDT offers several advantages, including minimal toxicity to healthy tissues and no long-term systemic side effects. However, its therapeutic efficacy is limited under hypoxic conditions, as the process relies on the presence of oxygen in the target tissue. To address these challenges, combining PDT with photothermal therapy (PTT) creates a synergistic phototherapy approach. The heat generated by PTT enhances blood flow in tumors, increasing oxygen delivery to tumor sites and boosting PDT's effectiveness. These combinations are being explored in PDT/PTT as an innovative, synergistic cancer treatment strategy, aiming to enhance the therapeutic index. One promising strategy to connect both PDT and PTT therapies involves developing nanosystems that integrate metal hexacyanoferrate (MHCF) nanoparticles with multifunctional PS. Here, we review several studies that have evaluated the combination of MHCF with various PSs to apply PDT and PTT synergistically. We discuss how nanocomposites based on these materials can address the challenges and limitations still faced in PDT/PTT. This review aims to identify new opportunities for the application of metal hexacyanoferrates in these phototherapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Edson Nossol
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais Brazil
| | - Tayana Mazin Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais Brazil
| |
Collapse
|
2
|
Luo Q, Ding N, Chen H, Zhang Y, Zhang M, Gao W, Li Y, Feng K, Shi X. A novel "mix-response" biosensor for colorimetric and photothermal dual-mode detection of sulfide ions in food based on silver-doping Prussian blue nanoparticle. Talanta 2024; 279:126493. [PMID: 39018946 DOI: 10.1016/j.talanta.2024.126493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024]
Abstract
Effective identification of sulfur ions (S2-) in foodstuff is crucial for food safety and human health, but it remains challenging. Traditional single-mode colorimetric sensing methods are simple and sensitive, but are prone to interference from colored substances which can lead to false positives or negatives results. Herein, we develop a novel "mix-response" biosensor for colorimetric and photothermal dual-mode detection of S2- with good simplicity, sensitivity and portability. In this biosensor, silver-doping Prussian blue nanoparticle (SPB NPs) was used as signal output component, which not only exhibits blue color characteristics, but also has photothermal conversion properties activated by near-infrared (NIR) laser. Upon increasing the S2- concentration, the prepared SPB NPs undergo etching, leading to the formation of new silver sulfide precipitation (Ag2S), along with different colorimetric and photothermal response signals. For the portable visualization of S2-, the color information was recorded by a smartphone in combination with RGB (red channel) analysis and the evolution of the photothermal signal was documented by a thermal imager. The introduction of smartphone and handheld thermal imager in this "mix-response" biosensor makes it suitable for on-site quantitative detection of S2- without sophisticated instrument. Moreover, the development of this "mix-response" biosensor does not need the use of recognition probes (e.g. aptamers and reaction intermediates), thereby simplifying the construct procedures of sensing strategies and improving the economic efficiency of detection. More importantly, the photothermal response signals can overcome the interference of colored substances in foods, thereby reducing the false positives or negatives of the detection results.
Collapse
Affiliation(s)
- Qian Luo
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Nan Ding
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Hongxiu Chen
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaqin Zhang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Miao Zhang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Wenli Gao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanhua Li
- School of Chemistry and Material Engineering, Huizhou University, Huizhou, Guangdong, 516007, China
| | - Kejun Feng
- School of Chemistry and Material Engineering, Huizhou University, Huizhou, Guangdong, 516007, China.
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Zhao Q, Chen L, Lu D, Xie X, Wu J, Jiang Z, Li Q, Shi X. Triple synergistic sterilization of Prussian blue nanoparticle-doped chitosan/gelatin packaging film for enhanced food preservation. Int J Biol Macromol 2024; 278:134606. [PMID: 39127276 DOI: 10.1016/j.ijbiomac.2024.134606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
To mitigate food spoilage caused by microbial contamination and extend the shelf life of food, antibacterial and eco-friendly biological packaging materials as an alternative to petroleum-based plastics is encouraged. Herein, an innovative and green composite film with triple antibacterial activity has been fabricated by introducing prussian blue nanoparticles (PBNPs) into chitosan (CS)-based films blended with gelatin (Gel) for the preservation of food, named CS/Gel/PB film. Due to the incorporation of PBNPs, CS/Gel/PB film exhibits enhanced mechanical, barrier and water resistance, and thermal abilities. The inherent bacterial trapping and killing capabilities of CS (contact killing), photothermal/photodynamic killing based on the excellent photothermal property of PBNPs under NIR irradiation synergistically facilitate the sterilization against Escherichia coli and Staphylococcus aureus (antibacterial ratio = 99.99 %). The film exhibits outstanding preservation capability in product storage, significantly extending the shelf life of strawberry and pork to 15 and 7 days, respectively. Meanwhile, the cytotoxicity assessment of CS/Gel/PB against HepG2 cells ascertains a cell viability exceeding 96 %, indicating a negligible toxicity level. Additionally, this film also exhibits superior biodegradability (preliminary degradation on the 10th day and completion on the 40th day) compared with PE film. Overall, these properties demonstrate great potential of CS/Gel/PB film as a novel packaging material.
Collapse
Affiliation(s)
- Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Liye Chen
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Dai Lu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinhui Xie
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Wu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziping Jiang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiang Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Chen R, Zhang K, Shi Y, Ettelaie R, Shi Y, Li D, Zhang S, Dang Y, Chen J. Advancing Photodynamic Antimicrobial Strategy: Sustainable Fabrication of Novel Lauryl Gallate-Chitosan Hydrophobic Films with Rapid Bacterial Capture and Biofilms Elimination Capabilities for Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19571-19584. [PMID: 38564737 DOI: 10.1021/acsami.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.
Collapse
Affiliation(s)
- Rukang Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Ke Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Yugang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
- Institute of Food Microbiology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Rammile Ettelaie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Yu Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Donghui Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Siying Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| | - Yali Dang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jianshen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, Zhejiang, China
| |
Collapse
|