1
|
Liu X, Zhao X, Tang Y, Yang H. Hierarchical Porous Silicon-Carbon Encapsulated Phase Change Materials for Efficient Photothermoelectric Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70498-70507. [PMID: 39656995 DOI: 10.1021/acsami.4c14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Scale-up applications in solar energy storage of phase change materials (PCMs) are hindered by the limitation of solid-liquid leakage and the lack of light absorption ability. Porous silicon-carbon (PSC) with a high specific surface area was prepared from a phytolith (Phy) silicon-carbon ore by the alkali-melting method, taking advantage of the natural mineral rich in light-trapping carbon structures in Phy. Stearic acid (SA) was impregnated into the PSC to produce integrated photothermal composite phase change materials (SA/PSC). The performance analysis of the form-stable PCMs (FSPCMs) shows that SA/PSC800 has good shape stability and excellent photothermal conversion efficiency and storage capacity, with a high photothermal conversion efficiency of 98.87%. The enthalpy change of the phase change was weak after 200 cycles, indicating good cycle regeneration. A solar thermoelectric generator (STEG) system for light-heat-electric energy conversion and storage was constructed using SA/PSC800 as a hot-side material integrated with a thermoelectric generator. Under a simulated solar light intensity of 200 mW/cm2, the output power generated by the STEG system through the Seeback effect can keep the small bulb and LED glowing for 21 and 18 s, respectively. Therefore, the prepared composite FSPCMs have promising applications in battery-coupled photovoltaic power generation.
Collapse
Affiliation(s)
- Xi Liu
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Department of Natural Resources of Jiangxi Province, Jiangxi Province Natural Resources Interests and Reserve Security Center, Nanchang 330025, China
| | - Xiaoguang Zhao
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yili Tang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Sun W, Qi H, Li T, Lin M, Zhang C, Qiu Y. Salt-resistant continuous solar evaporation composites based on nonwovens with synergistic photothermal effect of graphene oxide/copper sulphide. RSC Adv 2024; 14:28984-28997. [PMID: 39268055 PMCID: PMC11391346 DOI: 10.1039/d4ra05241b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Solar interfacial evaporation is an innovative and environmentally friendly technology for producing freshwater from seawater. However, current interfacial evaporators are costly to manufacture, have poor tolerance to environmental conditions, exhibit instability in evaporation efficiency in highly saline solutions, and fail to prevent salt crystallization. The production of user-friendly, durable and salt-resistant interfacial evaporators remains a significant challenge. By spraying graphene oxide on a nonwoven material using PVA as a binder and adding biphasic Cu x S by an in situ growth method, we designed 2D/3D micro- and nanostructured graphene oxide nanosheets/copper sulfide nanowires (GO/Cu x S) with synergistic photo-thermal effects in the full spectral range. The evaporation efficiency in pure water was 94.61% with an evaporation rate of 1.5622 kg m-2 h-1. In addition, we enhanced convection by employing a vertically aligned water-guide rod structure design, where the concentration difference drives salt dissolution thereby reducing the formation of salt crystals. The evaporation efficiency in 20% salt water was 80.41% with an evaporation rate of 1.3228 kg m-2 h-1 and long-term stability of brine evaporation was demonstrated under continuous sunlight. This solar steam generator expands the potential application areas of desalination and wastewater purification.
Collapse
Affiliation(s)
- Wenbo Sun
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Huan Qi
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| | - Tan Li
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Minggang Lin
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Chuyang Zhang
- College of Textile and Apparel, Xinjiang University Urumqi 830000 Xinjiang China
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
| | - Yiping Qiu
- Institute of Smart & Ecological Textile, Quanzhou Normal University Fujian 362002 China
- College of Textiles and Apparel, Quanzhou Normal University Fujian 362002 China
| |
Collapse
|
3
|
Huang Y, Liu B, Yang Y, Xiao H, Han T, Jiang H, Li J, Zhou Y, Ke G, He H. BiVO 4 Film Coupling with CoAl 2O 4 Nanoparticles for Photoelectrochemical Water Splitting Utilizing Broad Solar Spectrum through p-n Heterojunction, Photothermal, and Cocatalytic Synergism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18670-18682. [PMID: 39163637 DOI: 10.1021/acs.langmuir.4c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Water oxidation is an endothermic and kinetics-sluggish reaction; the research of photoanodes with photothermal and cocatalytic properties is of great significance. Herein, BiVO4/CoAl2O4 film photoanodes were studied for solar water splitting through coupling spinel p-type CoAl2O4 nanoparticles on n-type BiVO4 films. Compared to the BiVO4 photoanode, better performance was observed on the BiVO4/CoAl2O4 photoanode during water oxidation. A photocurrent of 3.47 mA/cm2 was produced on the BiVO4/CoAl2O4 photoanode at 1.23 V vs RHE, which is two-fold to the BiVO4 photoanode (1.70 mA/cm2). Additionally, the BiVO4/CoAl2O4 photoanodes showed an acceptable stability for water oxidation. The BiVO4/CoAl2O4 photoanode being of higher water oxidation performance could be attributed to the presence of p-n heterojunction, cocatalytic, and photothermal effects. In specific, under the excitation of λ < 520 nm light, the holes produced in/on BiVO4 can be transferred to CoAl2O4 owing to the p-n heterojunctions of BiVO4/CoAl2O4. Meanwhile, the temperature on the BiVO4/CoAl2O4 photoanode rises quickly up to ∼53 °C under AM 1.5 G irradiation due to the photothermal property of CoAl2O4 through capturing the 520 < λ < 720 nm light. The temperature rising on the BiVO4/CoAl2O4 photoanode improves the cocatalytic activity of CoAl2O4 and modifies the wettability of BiVO4/CoAl2O4 for effective water oxidation.
Collapse
Affiliation(s)
- Yujie Huang
- College of Materials and New Energy, Chongqing University of Science and Technology. Chongqing 401331, China
| | - Binyao Liu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yiwen Yang
- College of Materials and New Energy, Chongqing University of Science and Technology. Chongqing 401331, China
| | - Hao Xiao
- College of Materials and New Energy, Chongqing University of Science and Technology. Chongqing 401331, China
| | - Tao Han
- College of Materials and New Energy, Chongqing University of Science and Technology. Chongqing 401331, China
| | - Hanmei Jiang
- College of Materials and New Energy, Chongqing University of Science and Technology. Chongqing 401331, China
| | - Jiahe Li
- College of Materials and New Energy, Chongqing University of Science and Technology. Chongqing 401331, China
| | - Yong Zhou
- Ecomaterials and Renewable Energy Research Center, School of Physics, Nanjing University, Nanjing 211102, China
| | - Gaili Ke
- College of Materials and New Energy, Chongqing University of Science and Technology. Chongqing 401331, China
| | - Huichao He
- College of Materials and New Energy, Chongqing University of Science and Technology. Chongqing 401331, China
| |
Collapse
|
4
|
Guo Q, Yi H, Jia F, Song S. Novel MoS 2/montmorillonite hybrid aerogel encapsulated PEG as composite phase change materials with superior solar-thermal energy harvesting and storage. J Colloid Interface Sci 2024; 667:269-281. [PMID: 38636228 DOI: 10.1016/j.jcis.2024.04.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Phase change materials (PCMs) offer significant advantages in energy conversion and storage by facilitating the storage and release of thermal energy during phase transition processes. However, challenges such as leakage during PCM phase transitions and poor light absorption properties have constrained their application in the field of photothermal energy storage. In this study, Montmorillonite (Mt) and molybdenum disulfide (MoS2) has been used to design and synthesize hybrid aerogels (MoS2/Mt) boasting high mechanical strength and excellent photothermal conversion performance. These aerogels are then used to encapsulate polyethylene glycol (PEG) to prepare composite PCMs with outstanding solar-thermal conversion and storage performances. The results show that the synthesized MoS2/Mt-PEG composite PCMs exhibit high enthalpies of melting and solidification of 169.16 J/g and 170.78 J/g, respectively, while the aerogel supporting material has a high compressive modulus of 1.96 MPa. Moreover, the composite material displayed excellent thermal stability and leakage resistance after undergoing 30 melting-cooling cycles. Furthermore, the incorporation of MoS2 imparted outstanding light absorption properties to the MoS2/Mt-PEG composite, resulting in a high light absorption and photothermal conversion-storage efficiency of 93.4 % and 96.47 %, respectively. Synthesized composite PCMs also demonstrate outstanding performance in solar-thermal-electricity conversion, achieving a voltage output of 458 mV under illumination conditions and maintaining a sustainable voltage output even after removing the light source. Thus, the composite PCMs prepared in this work can meet the requirements of high enthalpy, effective leakage prevention, efficient solar-thermal conversion and solar-thermal-electricity conversion performance, thereby presenting potential applications in practical solar energy collection, conversion, and storage.
Collapse
Affiliation(s)
- Qijing Guo
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Hao Yi
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China.
| | - Feifei Jia
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Tian J, Wang C, Wang K, Xue R, Liu X, Yang Q. Flexible Polyolefin Elastomer/Paraffin Wax/Alumina/Graphene Nanoplatelets Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Solar Conversion and Thermal Energy Storage Applications. Polymers (Basel) 2024; 16:362. [PMID: 38337250 DOI: 10.3390/polym16030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, electrically insulating polyolefin elastomer (POE)-based phase change materials (PCMs) comprising alumina (Al2O3) and graphene nanoplatelets (GNPs) are prepared using a conventional injection moulding technique, which exhibits promising applications for solar energy storage due to the reduced interfacial thermal resistance, excellent stability, and proficient photo-thermal conversion efficiency. A synergistic interplay between Al2O3 and GNPs is observed, which facilitates the establishment of thermally conductive pathways within the POE/paraffin wax (POE/PW) matrix. The in-plane thermal conductivity of POE/PW/GNPs 5 wt%/Al2O3 40 wt% composite reaches as high as 1.82 W m-1K-1, marking a remarkable increase of ≈269.5% when compared with that of its unfilled POE/PW counterpart. The composite exhibits exceptional heat dissipation capabilities, which is critical for thermal management applications in electronics. Moreover, POE/PW/GNPs/Al2O3 composites demonstrate outstanding electrical insulation, enhanced mechanical performance, and efficient solar energy conversion and transportation. Under 80 mW cm-2 NIR light irradiation, the temperature of the POE/PW/GNPs 5 wt%/Al2O3 40 wt% composite reaches approximately 65 °C, a notable 20 °C improvement when compared with the POE/PW blend. The pragmatic and uncomplicated preparation method, coupled with the stellar performance of the composites, opens a promising avenue and broader possibility for developing flexible PCMs for solar conversion and thermal storage applications.
Collapse
Affiliation(s)
- Jie Tian
- School of Civil Engineering and Architecture, Shaanxi University of Technology, Hanzhong 723099, China
| | - Chouxuan Wang
- National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723099, China
| | - Kaiyuan Wang
- National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723099, China
| | - Rong Xue
- National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723099, China
| | - Xinyue Liu
- National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723099, China
| | - Qi Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|