1
|
Zhang Y, Lu K, Yao L, Zhang H, Zhang S, Zou Y, Yu Q, Chen H. A photothermal surface modified with polyelectrolyte multilayers for gene transfection and cell harvest. Colloids Surf B Biointerfaces 2024; 242:114110. [PMID: 39047645 DOI: 10.1016/j.colsurfb.2024.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Gene transfection, which involves introducing nucleic acids into cells, is a pivotal technology in the life sciences and medical fields, particularly in gene therapy. Surface-mediated transfection, primarily targeting cells adhering to surfaces, shows promise for enhancing cell transfection by localizing and presenting surface-bound nucleic acids directly to the cells. However, optimizing endocytosis for efficient delivery remains a persistent challenge. Additionally, ensuring efficient and non-traumatic cell harvest capability is crucial for applications such as ex vivo cell-based therapy. To address these challenges, we developed a photothermal platform with enzymatic degradation capability for efficient gene transfection and cell harvest. This platform is based on carbon nanotubes (CNTs) doped with poly(dimethylsiloxane) and modified with polyelectrolyte multilayers (PEMs) containing hyaluronic acid and quaternized chitosan, allowing for substantial loading of poly(ethyleneimine)/plasmid DNA (pDNA) complexes through electrostatic interactions. Upon irradiation of near-infrared laser, the photothermal properties of CNTs enable high transfection efficiency by delivering pDNA into attached cells via a membrane disruption mechanism. The engineered cells can be harvested by treating with a non-toxic hyaluronidase solution to degrade PEMs, thus maintaining good viability for further applications. This platform has demonstrated remarkable efficacy across various cell lines (including Hep-G2 cells, Ramos cells and primary T cells), achieving a transfection efficiency exceeding 95 %, cell viability exceeding 90 %, and release efficiency surpassing 95 %, highlighting its potential for engineering living cells.
Collapse
Affiliation(s)
- Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Lihua Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
2
|
Tao XN, Liu HT, Xiang XW, Zhu CH, Qiu J, Zhao H, Liu KF. Regulating the Distribution and Accumulation of Charged Molecules by Progressive Electroporation for Improved Intracellular Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36063-36076. [PMID: 38958208 DOI: 10.1021/acsami.4c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The cell membrane separates the intracellular compartment from the extracellular environment, constraining exogenous molecules to enter the cell. Conventional electroporation typically employs high-voltage and short-duration pulses to facilitate the transmembrane transport of molecules impermeable to the membrane under natural conditions by creating temporary hydrophilic pores on the membrane. Electroporation not only enables the entry of exogenous molecules but also directs the intracellular distribution of the electric field. Recent advancements have markedly enhanced the efficiency of intracellular molecule delivery, achieved through the utilization of microstructures, microelectrodes, and surface modifications. However, little attention is paid to regulating the motion of molecules during and after passing through the membrane to improve delivery efficiency, resulting in an unsatisfactory delivery efficiency and high dose demand. Here, we proposed the strategy of regulating the motion of charged molecules during the delivery process by progressive electroporation (PEP), utilizing modulated electric fields. Efficient delivery of charged molecules with an expanded distribution and increased accumulation by PEP was demonstrated through numerical simulations and experimental results. The dose demand can be reduced by 10-40% depending on the size and charge of the molecules. We confirmed the safety of PEP for intracellular delivery in both short and long terms through cytotoxicity assays and transcriptome analysis. Overall, this work not only reveals the mechanism and effectiveness of PEP-enhanced intracellular delivery of charged molecules but also suggests the potential integration of field manipulation of molecular motion with surface modification techniques for biomedical applications such as cell engineering and sensitive cellular monitoring.
Collapse
Affiliation(s)
- Xiao-Nan Tao
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Hao-Tian Liu
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Xiao-Wei Xiang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Cai-Hui Zhu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Jian Qiu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Hui Zhao
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Ke-Fu Liu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Jiang J, Liu J, Liu X, Xu X, Liu Z, Huang S, Huang X, Yao C, Wang X, Chen Y, Chen HJ, Wang J, Xie X. Coupling of nanostraws with diverse physicochemical perforation strategies for intracellular DNA delivery. J Nanobiotechnology 2024; 22:131. [PMID: 38532389 DOI: 10.1186/s12951-024-02392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
Effective intracellular DNA transfection is imperative for cell-based therapy and gene therapy. Conventional gene transfection methods, including biochemical carriers, physical electroporation and microinjection, face challenges such as cell type dependency, low efficiency, safety concerns, and technical complexity. Nanoneedle arrays have emerged as a promising avenue for improving cellular nucleic acid delivery through direct penetration of the cell membrane, bypassing endocytosis and endosome escape processes. Nanostraws (NS), characterized by their hollow tubular structure, offer the advantage of flexible solution delivery compared to solid nanoneedles. However, NS struggle to stably self-penetrate the cell membrane, resulting in limited delivery efficiency. Coupling with extra physiochemical perforation strategies is a viable approach to improve their performance. This study systematically compared the efficiency of NS coupled with polyethylenimine (PEI) chemical modification, mechanical force, photothermal effect, and electric field on cell membrane perforation and DNA transfection. The results indicate that coupling NS with PEI modification, mechanical force, photothermal effects provide limited enhancement effects. In contrast, NS-electric field coupling significantly improves intracellular DNA transfection efficiency. This work demonstrates that NS serve as a versatile platform capable of integrating various physicochemical strategies, while electric field coupling stands out as a form worthy of primary consideration for efficient DNA transfection.
Collapse
Affiliation(s)
- Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China
| | - Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Xinmin Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Xiafeng Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China
| | - Yixin Chen
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China.
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China.
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China.
| |
Collapse
|