1
|
Liang A, Zhai J, Zou J, Chen X. Porous Carbon Nanoparticle Composite Paper Fiber with Laser-Induced Graphene Surface Microstructure for Pressure Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2688-2698. [PMID: 39856562 DOI: 10.1021/acs.langmuir.4c04486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
In recent years, flexible pressure sensors have played an increasingly important role in human health monitoring. Inspired by traditional papermaking techniques, we have developed a highly flexible, low-cost, and ecofriendly flexible pressure sensor using shredded paper fibers as the substrate. By combining the properties of laser-induced graphene with the structure of paper fibers, we have improved the internal structure of pressure-sensitive paper and designed a conical surface microstructure, providing new insights into nanomaterial engineering. It features low resistance (424.44 Ω), low energy consumption of only 0.367 μW under a pressure of 1.96 kPa, high sensitivity (1.68 kPa-1), and a wide monitoring range (98 Pa-111.720 kPa). The pressure-sensitive paper with surface microstructure (MFTG) developed in this study has a total thickness comparable to A4 paper, is soft and bendable, can be cut into any shape like paper to fit the human body, and holds great potential for continuous monitoring of human activity status and physiological information.
Collapse
Affiliation(s)
- Aoxun Liang
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Junlong Zhai
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Jixu Zou
- School of Chemistry and Materials Science, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| | - Xueye Chen
- College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China
| |
Collapse
|
2
|
Wang S, Du X, Cheng X, Du Z, Zhang Z, Wang H. Ultrahigh Stretchable, Highly Transparent, Self-Adhesive, and Environment-Tolerant Chitin Nanocrystals Engineered Eutectogels toward Multisignal Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45537-45549. [PMID: 39138982 DOI: 10.1021/acsami.4c09589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Addressing the conflict between achieving elevated mechanical stretchability and environmental adaptability is significant to a breakthrough in the practical application of flexible wearable materials. Therefore, inspired by the perceptive and protective properties of human skin, flexible wearable electronic skins (E-skins) based on deep eutectic solvent (DES) liquid and multiresponse eutectogel have been widely considered to be a promising platform for building a flexible wearable management system to achieve the purpose of "one stone, two birds". In this work, a multifunctional E-skin was designed based on an ultrastretchable, transparent, self-adhesive, and environmentally tolerant eutectogel by first incorporating cationized modified chitin nanocrystals into a covalently cross-linked polymer network comprised of the skeleton formed by a PAA polymerization network structure serving as a stretchable matrix and filled with DESs (ChCl:EG). The obtained eutectogel exhibits superhigh stretchability (up to 6707%), high toughness (17.7 MJ/m3), mechanical strength (0.48 MPa), self-adhesive, and high transparency (91.2%). Simultaneously, the multisignal sensor based on the above comprehensive properties and thermosensitive capacity exhibits a wide monitoring range, high strain/compression/temperature sensitivity, and good reproducibility. Remarkably, the sensor could be attached to rat hearts without glue or stickers for long-term monitoring of high-quality in vivo heartbeat signals. In this way, it is believed that the designed E-skin system based on eutectogel has great potential to serve as a promising platform for the next generation of flexible multisignal monitoring integrated wearable management systems.
Collapse
Affiliation(s)
- Shuang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaosheng Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Cheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Zongliang Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Zhang H, Wang S, Zhang J, Zhou G, Sun X, Wang Y, Wang Y, Zhang K. High-sensitivity piezoresistive sensors based on cellulose handsheets using origami-inspired corrugated structures. Carbohydr Polym 2024; 328:121742. [PMID: 38220352 DOI: 10.1016/j.carbpol.2023.121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Cellulose-based composites have attracted significant attention in the fabrication and advancement of wearable devices due to their sustainable, degradable, and cost-effective properties. However, achieving a cellulosic sensor with reliable sensory feedback remains challenging owing to the deficiency in reversible microstructures during response processes. In this study, we developed a piezoresistive sensor consisting of nearly pure cellulose handsheets using origami-inspired corrugated structures to achieve durable and sensitive piezoresistive responses. Multi-walled carbon nanotubes (MWCNTs) were used as conducting agents. With the addition of 7 wt% MWCNTs, 36.27 % of the cellulose fiber surface was covered and the conductivity of cellulose handsheets was increased to 8.7 S/m. The obtained conductive cellulose handsheets were transformed into corrugated structures and integrated orthogonally to construct the piezoresistive sensors with reversible electrical paths for electrons. The restorable corrugated structure endowed the sensors with a wide workable pressure range (0-10 kPa), high sensitivity (6.09 kPa-1 in a range of 0-0.92 kPa), fast response time (<280 ms), and good durability (>1000 cycles). Furthermore, the practical applications of the proposed sensors as wearable devices were demonstrated through phonation, real-time sports monitoring, and step pressure tests.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China.
| | - Shijun Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Jie Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Gan Zhou
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yujie Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Kang Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| |
Collapse
|
4
|
Wang B, Wang X, Liu W, Song Z, Wang H, Li G, Yu D, Liu X, Ge S. Using chitosan nanofibers to synergistically construct a highly stretchable multi-functional liquid mental-based hydrogel for assembling strain sensor with high sensitivity and broad working range. Int J Biol Macromol 2024; 259:129225. [PMID: 38184053 DOI: 10.1016/j.ijbiomac.2024.129225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Liquid metal (LM) microdroplets have garnered significant interest as conductive materials for initiating free radical polymerization in the development of conductive hydrogels suited for strain sensors. However, crafting multi-functional conductive hydrogels that boast both high stretchability and superior sensing capabilities remains as a challenge. In this study, we have successfully synthesized LM-based conductive hydrogels characterized by remarkable stretchability and sensing performance employing acrylic acid (AA) to evenly distribute chitosan nanofibers (CSFs) and to subsequently catalyze the free radical polymerization of AA. The resultant polymer network was crosslinked within situ polyacrylic acid (PAA), facilitated by Ga3+ in conjunction with guar gum (GG)-stabilized Ga droplets. The strategic interplay between the rigid, and protonated CSFs and the pliable PAA matrix, coupled with the ionic crosslinking of Ga3+, endows the resulting GG-Ga-CSF-PAA hydrogel with high stretchability (3700 %), ultrafast self-healing, robust moldability, and strong adhesiveness. When deployed as a strain sensing material, this hydrogel exhibits a high gauge factor (38.8), a minimal detection threshold, enduring durability, and a broad operational range. This versatility enables the hydrogel-based strain sensor to monitor a wide spectrum of human motions. Remarkably, the hydrogel maintains its stretchability and sensing efficacy under extreme temperatures after a simple glycerol solution treatment.
Collapse
Affiliation(s)
- Bingyan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong academy of science, Jinan 250353, China
| | - Xueyan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong academy of science, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong academy of science, Jinan 250353, China.
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong academy of science, Jinan 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong academy of science, Jinan 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong academy of science, Jinan 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong academy of science, Jinan 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong academy of science, Jinan 250353, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| |
Collapse
|