1
|
Zhang F, Zhu L, Song M, Cao X, Pang X, Liang P, Peng Z, Chao X, Yang Z, Wu D. Giant Deformation Induced Staggered-Layer Structure Promoting the Thermoelectric and Mechanical Performance in n-Type Bi 2(Te, Se) 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401070. [PMID: 38528434 DOI: 10.1002/smll.202401070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Bismuth telluride has long been recognized as the most promising near-room temperature thermoelectric material for commercial application; however, the thermoelectric performance for n-type Bi2(Te, Se)3-based alloys is far lagging behind that of its p-type counterpart. In this work, a giant hot deformation (GD) process is implemented in an optimized Bi2Te2.694Se0.3I0.006+3 wt%K2Bi8Se13 precursor and generates a unique staggered-layer structure. The staggered-layered structure, which is only observed in severely deformed crystals, exhibits a preferential scattering on heat-carrying phonons rather than charge-carrying electrons, thus resulting in an ultralow lattice thermal conductivity while retaining high-weight carrier mobility. Moreover, the staggered-layer structure is located adjacent to the van der Waals gap in Bi2(Te, Se)3 lattice and is able to strengthen the interaction between anion layers across the gap, leading to obviously improved compressive strength and Vickers hardness. Consequently, a high peak figure of merit ZT of ≈ 1.3 at 423 K, and an average ZT of ≈ 1.2 at 300-473 K can be achieved in GD sample. This study demonstrates that the GD process can successfully decouple the electrical and thermal transports with simultaneously enhanced mechanic performance.
Collapse
Affiliation(s)
- Fudong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Lujun Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Mingzhen Song
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaofang Cao
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaohui Pang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Pengfei Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanhui Peng
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaolian Chao
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zupei Yang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Di Wu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|