1
|
Carretero G, Samarasekara HK, Battigelli A, Mojsoska B. Uprising Unconventional Nanobiomaterials: Peptoid Nanosheets as a Multi-Modular Platform for Advanced Biological Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406128. [PMID: 39618020 PMCID: PMC11878265 DOI: 10.1002/smll.202406128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Indexed: 03/05/2025]
Abstract
Peptoids are bio-inspired peptidomimetic polymers that can be designed to self-assemble into a variety of nanostructures. Among these different assemblies, peptoid nanosheets are the most studied. Peptoid nanosheets are 2D highly ordered nanostructures, able to free float in aqueous solutions while featuring versatile chemical displays that can be tuned to incorporate a plethora of functional units. In this review, the synthetic approach used to prepare sequence-defined oligomers and highlight their main characteristics is introduced. The ability of peptoids to fold into nanostructures is then reviewed with an extensive emphasis on peptoid nanosheets, and their physico-chemical characteristics, assembly mechanism, and stability. A particular focus is also placed on the variety of functionalization incorporated into the peptoid nanosheets to tune their properties toward specific applications, especially within the fields of biology and medicine. Finally, the comparison between peptoid nanosheets and other 2D nanomaterials is discussed to address the challenges in the current nanomaterials and underline the future development of peptoid nanosheets in the field of biology.
Collapse
Affiliation(s)
- Gustavo Carretero
- Department of Science and EnvironmentRoskilde UniversityRoskilde4000Denmark
| | | | | | - Biljana Mojsoska
- Department of Science and EnvironmentRoskilde UniversityRoskilde4000Denmark
| |
Collapse
|
2
|
Smith PT, Franco JL, Kirshenbaum K. Enhancing molecular diversity of peptoid oligomers using amino acid synthons. Org Biomol Chem 2025; 23:1175-1183. [PMID: 39693124 DOI: 10.1039/d4ob01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
We report the use of unprotected amino acids as submonomer reagents in the solid-phase synthesis of N-substituted glycine peptoid oligomers. Subsequent coupling of an amine, alcohol, or thiol to the free carboxylate of the incorporated amino acid provides access to peptoids bearing amides, esters, and thioesters as side chain pendant groups and permits further elongation of the peptoid backbone. The palette of readily obtained building blocks suitable for solid-phase peptoid synthesis is substantially expanded through this protocol, further enhancing the chemical diversity and potential applications of sequence-specific peptoid oligomers.
Collapse
Affiliation(s)
- Peter T Smith
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | - Jennifer L Franco
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York 10003, USA.
| |
Collapse
|
3
|
de Carvalho LMS, de Souza NRD, Wanderlind EH. Catalytic strategies for detoxifying phosphorus(V) biocides. Chem Commun (Camb) 2025; 61:391-406. [PMID: 39629671 DOI: 10.1039/d4cc03116d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Organophosphorus substances are employed in several industrial segments, albeit they may feature high toxicity levels depending on their structures. Based on previous extensive investigations of structure-reactivity patterns, researchers have been working on the development of catalysts as a means to detoxify phosphorus(V) organic compounds rapidly and safely through specific reaction pathways. This highlight reviews some recent advances in the utilization of catalytic systems for the decomposition of organophosphorus(V) compounds, in most cases using simulants of nerve agents. The nature of the catalysts is wide, including heterogeneous, colloidal and supramolecular systems, and although not all cases may be practical for the detoxification of phosphorus(V) organic structures, they are certainly useful for future research on this theme.
Collapse
Affiliation(s)
- Larissa Maria S de Carvalho
- Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Chemistry, Department of Organic Chemistry, BR 465, Km 7, CEP 23.897-000, Seropédica (Rio de Janeiro), Brazil.
| | - Nathália R D de Souza
- Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Chemistry, Department of Organic Chemistry, BR 465, Km 7, CEP 23.897-000, Seropédica (Rio de Janeiro), Brazil.
| | - Eduardo H Wanderlind
- Federal Rural University of Rio de Janeiro (UFRRJ), Institute of Chemistry, Department of Organic Chemistry, BR 465, Km 7, CEP 23.897-000, Seropédica (Rio de Janeiro), Brazil.
| |
Collapse
|
4
|
Guo X, Zhang Y, Huang B, Han L. Organophosphorus Hydrolase-like Nanozyme with an Activity-Quenched Aggregation-Induced Emission Effect: A Self-Reporting and Specific Assay of Nerve Agents. Anal Chem 2024; 96:16695-16705. [PMID: 39369390 DOI: 10.1021/acs.analchem.4c02982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Given the promising prospect of aggregation-induced emission luminogens (AIEgens) in fluorescence assays, it is interesting and significant to endow AIEgens with molecular recognition capability (such as enzyme-like activity). Here, an AIE nanomaterial with intrinsic enzyme-like activity (named as "AIEzyme") is designed and synthesized via a facile coordination polymerization of Zr4+ and AIE ligands. AIEzyme possesses enhanced and stable fluorescence in different solvents because of the AIE effect of ligands in the rigid structure of a coordination polymer. On the other hand, the organophosphorus hydrolase (OPH)-mimicking activity of AIEzyme exhibits excellent affinity and specific activity. Interestingly, the OPH-like activity can quench the inherent fluorescence of AIEzyme by the hydrolysate of a typical organophosphorus nerve agent (OPNA), diethyl-4-nitrophenylphosphate. Due to the sensitive activity-induced quenching effect for AIE, the self-reporting fluorescence assay method based on AIEzyme was established, which shows ultrahigh sensitivity, high selectivity, good storage stability, and acceptable reliability for a real sample assay. Moreover, the simultaneous colorimetric method broadens the detection range and the application scenarios. The proposed assay method avoided the interference of O2 during detection because the OPH-like activity does not derive from the generation of ROS. As a bonus, AIEzyme can also be used for the degradation of OPNAs by OPH-like activity, and the process can be self-monitored by AIE quenching. This work would provide a new opportunity for expanding the application of AIEgens and artificial enzymes by endowing AIEgens with enzyme-like activity.
Collapse
Affiliation(s)
- Xinyan Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Yucui Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, China
| |
Collapse
|
5
|
Ruan G, Fridman N, Maayan G. Unique Crystal Structure of a Self-Assembled Dinuclear Cu Peptoid Reveals an Unusually Long Cu···Cu Distance. ACS OMEGA 2024; 9:42002-42009. [PMID: 39398127 PMCID: PMC11465249 DOI: 10.1021/acsomega.4c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Studies on a series of molecular dicopper peptoid complexes showed that the Cu···Cu distances measured in X-ray single-crystal diffraction are typically in the range of 4.2-6.9 Å. Herein, we designed a new peptoid, L1, having 2,2'-bipyridine, propyl, and pyridyl side chains and discovered that although it forms a typical dicopper self-assembled structure (complex 1), the Cu···Cu distance is exceedingly long -8.043 Å. By analyzing its structure and surface properties in comparison to a control Cu-peptoid complex (2), in which the pyridyl side chain is modified by an ethanolic side chain, we suggest that the long Cu···Cu distance is contributed by the hydrophilic-hydrophobic interaction influenced by the pyridyl side chain and the steric hindrance of the propyl side chain. This result may motivate the use of dinuclear Cu peptoid complexes for wider applications, such as cooperative catalysis and luminescence.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
6
|
Jian T, Wang M, Hettige J, Li Y, Wang L, Gao R, Yang W, Zheng R, Zhong S, Baer MD, Noy A, De Yoreo JJ, Cai J, Chen CL. Self-Assembling and Pore-Forming Peptoids as Antimicrobial Biomaterials. ACS NANO 2024; 18:23077-23089. [PMID: 39146502 DOI: 10.1021/acsnano.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bacterial infections have been a serious threat to mankind throughout history. Natural antimicrobial peptides (AMPs) and their membrane disruption mechanism have generated immense interest in the design and development of synthetic mimetics that could overcome the intrinsic drawbacks of AMPs, such as their susceptibility to proteolytic degradation and low bioavailability. Herein, by exploiting the self-assembly and pore-forming capabilities of sequence-defined peptoids, we discovered a family of low-molecular weight peptoid antibiotics that exhibit excellent broad-spectrum activity and high selectivity toward a panel of clinically significant Gram-positive and Gram-negative bacterial strains, including vancomycin-resistant Enterococcus faecalis (VREF), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Tuning the peptoid side chain chemistry and structure enabled us to tune the efficacy of antimicrobial activity. Mechanistic studies using transmission electron microscopy (TEM), bacterial membrane depolarization and lysis, and time-kill kinetics assays along with molecular dynamics simulations reveal that these peptoids kill both Gram-positive and Gram-negative bacteria through a membrane disruption mechanism. These robust and biocompatible peptoid-based antibiotics can provide a valuable tool for combating emerging drug resistance.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeevapani Hettige
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Shao L, Hu D, Zheng SL, Trinh TKH, Zhou W, Wang H, Zong Y, Li C, Chen CL. Hierarchical Self-Assembly of Multidimensional Functional Materials from Sequence-Defined Peptoids. Angew Chem Int Ed Engl 2024; 63:e202403263. [PMID: 38657031 DOI: 10.1002/anie.202403263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Hierarchical self-assembly represents a powerful strategy for the fabrication of functional materials across various length scales. However, achieving precise formation of functional hierarchical assemblies remains a significant challenge and requires a profound understanding of molecular assembly interactions. In this study, we present a molecular-level understanding of the hierarchical assembly of sequence-defined peptoids into multidimensional functional materials, including twisted nanotube bundles serving as a highly efficient artificial light harvesting system. By employing synchrotron-based powder X-ray diffraction and analyzing single crystal structures of model compounds, we elucidated the molecular packing and mechanisms underlying the assembly of peptoids into multidimensional nanostructures. Our findings demonstrate that incorporating aromatic functional groups, such as tetraphenyl ethylene (TPE), at the termini of assembling peptoid sequences promotes the formation of twisted bundles of nanotubes and nanosheets, thus enabling the creation of a highly efficient artificial light harvesting system. This research exemplifies the potential of leveraging sequence-defined synthetic polymers to translate microscopic molecular structures into macroscopic assemblies. It holds promise for the development of functional materials with precisely controlled hierarchical structures and designed functions.
Collapse
Affiliation(s)
- Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thi Kim Hoang Trinh
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wenhao Zhou
- Department of Materials Science, University of Washington, Seattle, WA 98195, USA
| | - Haoyu Wang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yanxu Zong
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Materials Science and Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Changning Li
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Wang Y, Pan T, Li J, Zou L, Wei X, Zhang Q, Wei T, Xu L, Ulijn RV, Zhang C. Developing Isomeric Peptides for Mimicking the Sequence-Activity Landscapes of Enzyme Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22369-22378. [PMID: 38644563 DOI: 10.1021/acsami.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Enzymes catalyze almost all material conversion processes within living organisms, yet their natural evolution remains unobserved. Short peptides, derived from proteins and featuring active sites, have emerged as promising building blocks for constructing bioactive supramolecular materials that mimic native proteins through self-assembly. Herein, we employ histidine-containing isomeric tetrapeptides KHFF, HKFF, KFHF, HFKF, FKHF, and FHKF to craft supramolecular self-assemblies, aiming to explore the sequence-activity landscapes of enzyme evolution. Our investigations reveal the profound impact of peptide sequence variations on both assembly behavior and catalytic activity as hydrolytic simulation enzymes. During self-assembly, a delicate balance of multiple intermolecular interactions, particularly hydrogen bonding and aromatic-aromatic interactions, influences nanostructure formation, yielding various morphologies (e.g., nanofibers, nanospheres, and nanodiscs). Furthermore, the analysis of the structure-activity relationship demonstrates a strong correlation between the distribution of the His active site on the nanostructures and the formation of the catalytic microenvironment. This investigation of the sequence-structure-activity paradigm reflects how natural enzymes enhance catalytic activity by adjusting the primary structure during evolution, promoting fundamental research related to enzyme evolutionary processes.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tiezheng Pan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lina Zou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuewen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tingting Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), New York, New York 10031, United States
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Zheng R, Zhao M, Du JS, Sudarshan TR, Zhou Y, Paravastu AK, De Yoreo JJ, Ferguson AL, Chen CL. Assembly of short amphiphilic peptoids into nanohelices with controllable supramolecular chirality. Nat Commun 2024; 15:3264. [PMID: 38627405 PMCID: PMC11021492 DOI: 10.1038/s41467-024-46839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.
Collapse
Affiliation(s)
- Renyu Zheng
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jingshan S Du
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tarunya Rao Sudarshan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Materials Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
10
|
Heble AY, Chen CL. Access to Advanced Functional Materials through Postmodification of Biomimetic Assemblies via Click Chemistry. Biomacromolecules 2024; 25:1391-1407. [PMID: 38422548 DOI: 10.1021/acs.biomac.3c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The design, synthesis, and fabrication of functional nanomaterials with specific properties remain a long-standing goal for many scientific fields. The self-assembly of sequence-defined biomimetic synthetic polymers presents a fundamental strategy to explore the chemical space beyond biological systems to create advanced nanomaterials. Moreover, subsequent chemical modification of existing nanostructures is a unique approach for accessing increasingly complex nanostructures and introducing functionalities. Of these modifications, covalent conjugation chemistries, such as the click reactions, have been the cornerstone for chemists and materials scientists. Herein, we highlight some recent advances that have successfully employed click chemistries for the postmodification of assembled one-dimensional (1D) and two-dimensional (2D) nanostructures to achieve applications in molecular recognition, mineralization, and optoelectronics. Specifically, biomimetic nanomaterials assembled from sequence-defined macromolecules such as peptides and peptoids are described.
Collapse
Affiliation(s)
- Annie Y Heble
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|