1
|
Liu D, Yang Y, Xue B, Zhang D, Li F. The Construction of Face-to-Face Combination between NiFe-layered Double Hydroxide Nanosheets and Monolayer rGO for Efficient Water Splitting and Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57017-57031. [PMID: 39382976 DOI: 10.1021/acsami.4c10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Developing cost-effective and efficient electrocatalysts is essential for advancing a green energy future. Herein, a NiFe-layered double hydroxide loaded on reduced graphene oxide (NiFe-LDHs@rGO) hybrid was synthesized using a straightforward three-step process involving exfoliation tearing, electrostatic self-assembly, and chemical reduction. The face-to-face packing and ultrathin exfoliation enable strong heterogeneous interactions, fully harnessing the potential of these complementary two-dimensional counterparts. Consequently, the resultant catalyst displays outstanding oxygen evolution reaction (OER) catalytic activity and stability, whose overpotential is as low as 241 mV at 30 mA cm-2 and 255 mV at 50 mA cm-2 with a low Tafel slope of 62.1 mV dec-1. Both the experimental results and density functional theory (DFT) calculations reveal that the face-to-face assembly strengthens the electronic interactions between NiFe-LDHs and rGO, which effectively modulates the d-band center of Ni and Fesites and improves the reaction kinetics for OER. Moreover, the resultant NiFe-LDHs@rGO hybrids exhibit excellent multifunctional catalytic performance. Its hydrogen evolution reaction (HER) activity is endowed by Fe-site of NiFe-LDHs and defect states rGO and achieves a low voltage of 1.68 V to drive a current density of 10 mA cm-2 for overall water splitting. The face-to-face heteroassembly also imparts NiFe-LDHs@rGO with superior oxygen reduction reaction (ORR) activity, with a half-wave potential of 0.70 V and a limiting current density of 4.2 mA cm-2. Its ORR primarily follows a four-electron transfer pathway with a minor contribution from a two-electron process. This study establishes the groundwork for optimizing two-dimensional heterogeneous interfaces in LDH@carbon-based materials for advanced energy conversion.
Collapse
Affiliation(s)
- Daoxin Liu
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
- Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Changchun 130022, China
| | - Yang Yang
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
- Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Changchun 130022, China
| | - Bing Xue
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
- Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Changchun 130022, China
| | - Dandan Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Fangfei Li
- Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
- Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
- Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals, Ministry of Natural Resources, Changchun 130022, China
| |
Collapse
|
2
|
Jiang Y, Dai Y, Xie X, Wang Q, Dai J. Improved Performance of QDSSCs Can Be Achieved by Constructing a Transparent Anatase TiO 2@MWCNT Photoanode Based on the Bionic Mountain Lotus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12062-12072. [PMID: 38387039 DOI: 10.1021/acsami.3c18274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In this research, the structural characteristics of the mountain holly leaf were emulated. It was observed that after the initially uneven surface of the petals is filled with infiltrated water, it exhibits a distinctive transparent beauty after rainfall. Furthermore, the presence of leaf veins enhances the structural strength of the petals and facilitates nutrient transport. Inspired by previous studies on double-layer spin-coated films, we further developed and designed the TA TiO2@MWCNT photocathode thin film. This innovative film incorporates multiwalled carbon nanotubes (MWCNT) into a previously established TA TiO2 photocathode thin film. The inclusion of MWCNT results in the formation of a three-dimensional highway structure, where MWCNT intertwines within the TA TiO2 film. Under the operational state of immersion in the electrolyte, it maintains a level of transparency similar to that of the TA TiO2 photoanode thin film. The high-temperature sintering process results in the oxidation and depletion of MWCNTs on the surface of the film, leaving behind uniformly dispersed concave defects, thereby greatly enhancing the specific surface area. The findings demonstrate that the optoelectrode of high transparency and high specific surface area, TA TiO2@MWCNT, comprehensively enhances the performance of the solar cells. The transparent QDSSC surpasses its counterparts for the first time, achieving a power conversion efficiency (PCE) of 6.335%. This sets the stage for new materials and innovative approaches in the field of solar cells and other titanium dioxide film-related areas.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laborotary of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- School of Science, Changchun Institute of Technology, Changchun 130012, China
| | - Yile Dai
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xianfei Xie
- State Key Laborotary of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Qing Wang
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jianfeng Dai
- State Key Laborotary of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|