1
|
Wang Z, Duan Y, Liu C, Wang L, Zhang Z, Zhao W, Zhang X, Zhang Y, Fu P, Cai H, Cui Z, Pang X, Dong ZL, Liu M. High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8312-8326. [PMID: 39862161 DOI: 10.1021/acsami.4c19568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments. We elucidate the evolution of morphology and the ferroelectric phase in the submicron/nanoscale fibers during post processing as well as the corresponding changes in performance. The drawing process primarily enhances the orientation of the crystalline phase and reduces the fiber diameter, while the annealing process more effectively promotes the crystal size and crystallinity. Afterward, we propose an optimal postdrawing and annealing assisted-electrostatic spinning process. Under the synergistic effects of these post-treatments, the remanent polarization (Pr) of nylon-11,11 textile increased to 4.7 times that of the untreated textile, resulting in amplified piezoelectric outputs. The output voltage, current, and power density of the prepared PENG reached 21.5 V, 800 nA, and 1.88 mW·m-2 (80 MΩ), respectively. Notably, at pressures exceeding 8 kPa, the mechano-voltage and current sensitivity reached as high as 266 mV/kPa and 13.99 nA/kPa, respectively, which is extraordinary compared to other piezoelectric NGs and comparable to the performance of nylon-based triboelectric NGs. Furthermore, we investigated the potential application of the prepared PENG in biomechanical energy harvesting and human movement monitoring. Experiments demonstrated its effectiveness in powering light bulbs, tracking walking status, and monitoring finger/hand/wrist gestures.
Collapse
Affiliation(s)
- Zhixiao Wang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Yubo Duan
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Chongyang Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Lihua Wang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoyang Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhao
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Yuancheng Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Hongling Cai
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Zhe Cui
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Li Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Minying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Wei X, Xu K, Wang Y, Zhang Z, Chen Z. 3D Printing of Flexible BaTiO 3/Polydimethylsiloxane Piezocomposite with Aligned Particles for Enhanced Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11740-11748. [PMID: 38394674 DOI: 10.1021/acsami.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
With the rapid development of human-machine interactions and artificial intelligence, the demand for wearable electronic devices is increasing uncontrollably all over the world; however, an unsustainable power supply for such sensors continues to restrict their applications. In the present work, piezoelectric barium titanate (BaTiO3) ceramic powder with excellent properties was prepared from milled precursors through a solid-state reaction. To fabricate a flexible device, the as-prepared BaTiO3 powder was mixed with polydimethylsiloxane (PDMS) polymer. The BaTiO3/PDMS ink with excellent rheological properties was extruded smoothly by direct ink writing technology (DIW). BaTiO3 particles were aligned due to the shear stress effect during the printing process. Subsequently, the as-printed composite was assembled into a sandwich-type device for effective energy harvesting. It was observed that the maximum output voltage and current of this device reached 68 V and 720 nA, respectively, for a BaTiO3 content of 6 vol %. Therefore, the material extrusion-based three-dimensional (3D) printing technique can be used to prepare flexible piezoelectric composites for efficient energy harvesting.
Collapse
Affiliation(s)
- Xiangxia Wei
- Institute for Future (IFF), School of Automation, Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
| | - Kailong Xu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuming Wang
- Institute for Future (IFF), School of Automation, Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
| | - Zihan Zhang
- Institute for Future (IFF), School of Automation, Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
| | - Zhangwei Chen
- Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|