1
|
Wang Y, Meng Y, Ning J, Wang P, Ye Y, Luo J, Yin A, Ren Z, Liu H, Qi X, He S, Yu S, Wei J. Ultra-Thin Highly Sensitive Electronic Skin for Temperature Monitoring. Polymers (Basel) 2024; 16:2987. [PMID: 39518197 PMCID: PMC11548264 DOI: 10.3390/polym16212987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Electronic skin capable of reliable monitoring of human skin temperature is crucial for the advancement of non-invasive clinical biomonitoring, disease diagnosis, and health surveillance. Ultra-thin temperature sensors, with excellent mechanical flexibility and robustness, can conformably adhere to uneven skin surfaces, making them ideal candidates. However, achieving high sensitivity often demands sacrificing flexibility, rendering the development of temperature sensors combining both qualities a challenging task. In this study, we utilized a low-cost drop-casting technique to print ultra-thin and lightweight (thickness: approximately 3 µm, weight: 0.61 mg) temperature sensors based on a combination of vanadium dioxide and PEDOT:PSS at room temperature and atmospheric conditions. These sensors exhibit high sensitivity (temperature coefficient of resistance: -5.11%/°C), rapid response and recovery times (0.36 s), and high-temperature accuracy (0.031 °C). Furthermore, they showcased remarkable durability in extreme bending conditions (bending radius = 400 µm), along with stable electrical performance over approximately 2400 bending cycles. This work offers a low-cost, simple, and scalable method for manufacturing ultra-thin and lightweight electronic skins for temperature monitoring, which seamlessly integrate exceptional temperature-measuring capabilities with optimal flexibility.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Yuan Meng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Jin Ning
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Peike Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Yang Ye
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Jingjing Luo
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Ao Yin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Zhongqi Ren
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Haipeng Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Xue Qi
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Sisi He
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Jun Wei
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; (Y.W.); (Y.M.); (J.N.); (P.W.); (Y.Y.); (J.L.); (A.Y.); (Z.R.); (H.L.); (X.Q.)
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
2
|
Yang Y, Tang J, Guo H, Pan F, Jiang H, Wu Y, Chen C, Li X, Yuan B, Lu W. Robust and Environmentally Friendly MXene-Based Electronic Skin Enabling the Three Essential Functions of Natural Skin: Perception, Protection, and Thermoregulation. NANO LETTERS 2024; 24:10883-10891. [PMID: 39172995 DOI: 10.1021/acs.nanolett.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 μm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Jie Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Hongtao Guo
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Fei Pan
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Haojie Jiang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yongpeng Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Chaolong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiang Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Bin Yuan
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
| |
Collapse
|
3
|
Xiao W, Cai X, Jadoon A, Zhou Y, Gou Q, Tang J, Ma X, Wang W, Cai J. High-Performance Graphene Flexible Sensors for Pulse Monitoring and Human-Machine Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32445-32455. [PMID: 38870411 DOI: 10.1021/acsami.4c06546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Flexible sensors are of great interest due to their potential applications in human physiological signal monitoring, wearable devices, and healthcare. However, sensor devices employed for cardiovascular testing are normally bulky and expensive, which hamper wearability and point-of-care use. Herein, we report a simple method for preparing multifunctional flexible sensors using hydrazine hydrate (N2H4·H2O) as the reducing agent, graphene as the active material, and polyethylene (PE) tape as the encapsulation material. The flexible sensor produced with this method has a low detection limit of 100 mg, a fast response and recovery time of 40 and 20 ms, and shows no performance degradation even after up to 30,000 motion cycles. The sensors we have developed are capable of monitoring the pulse with relative accuracy, which presents an opportunity to replace bulky devices and normalize cardiovascular testing in the future. In order to further broaden the application field, the sensor is installed as a sensor array to recognize objects of different weights and shapes, showing that the sensor has excellent application potential in wearable artificial intelligence.
Collapse
Affiliation(s)
- Weiqi Xiao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Xiaoming Cai
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Aniqa Jadoon
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Yan Zhou
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Quan Gou
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Junwen Tang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Xiaolong Ma
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Weiyao Wang
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
- Southwest United Graduate School, Kunming 650000, PR China
| |
Collapse
|
4
|
Wen Y, Sun F, Xie Z, Zhang M, An Z, Liu B, Sun Y, Wang F, Mao Y. Machine learning-assisted novel recyclable flexible triboelectric nanogenerators for intelligent motion. iScience 2024; 27:109615. [PMID: 38632997 PMCID: PMC11022051 DOI: 10.1016/j.isci.2024.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
In the smart era, big data analysis based on sensor units is important in intelligent motion. In this study, a dance sports and injury monitoring system (DIMS) based on a recyclable flexible triboelectric nanogenerator (RF-TENG) sensor module, a data processing hardware module, and an upper computer intelligent analysis module are developed to promote intelligent motion. The resultant RF-TENG exhibits an ultra-fast response time of 17 ms, coupled with robust stability demonstrated over 4200 operational cycles, with 6% variation in output voltage. The DIMS enables immersive training by providing visual feedback on sports status and interacting with virtual games. Combined with machine learning (K-nearest neighbor), good classification results are achieved for ground-jumping techniques. In addition, it shows some potential in sports injury prediction (i.e., ankle sprains, knee hyperextension). Overall, the sensing system designed in this study has broad prospects for future applications in intelligent motion and healthcare.
Collapse
Affiliation(s)
- Yuzhang Wen
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Fengxin Sun
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Zhenning Xie
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Mengqi Zhang
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Zida An
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Bing Liu
- Criminal Investigation Police University of China, Shenyang 110035, China
| | - Yuning Sun
- Physical Education Department, Northeastern University, Shenyang 110819, China
| | - Fei Wang
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yupeng Mao
- Physical Education Department, Northeastern University, Shenyang 110819, China
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| |
Collapse
|