1
|
Zhang H, Su Q. Recent Advances of Indium-Based Sulfides in Photocatalytic CO 2 Reduction. ACS OMEGA 2025; 10:8793-8815. [PMID: 40092754 PMCID: PMC11904684 DOI: 10.1021/acsomega.4c09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Urgent and significant, the mitigation of greenhouse effects and the preservation of the Earth's ecological environment are paramount concerns. Photocatalytic carbon dioxide (CO2) reduction technology holds immense promise as it directly harnesses renewable solar energy to convert CO2 into hydrocarbon fuels and valuable chemical products. Indium (In)-based sulfides have garnered significant attention in the realm of fundamental research on CO2 photocatalytic conversion. The photocatalytic performance exhibited by In-based materials is attributed to the appropriate bandgap (E g), unique electronic states, tunable atomic structure, and superior optoelectronic properties. Notably, In-based metal sulfides also show excellent potential for addressing challenges related to photocorrosion and carrier recombination. This paper highlighted the key structural features and commonly employed synthesis techniques of In-based metal sulfides. Furthermore, it summarized effective modification strategies aimed at optimizing the photocatalytic performance of these materials. A particular focus was placed on exploring the intricate structure-activity relationships, encompassing the influence of heterostructure construction, element doping, defect engineering, and co-catalyst modification on enhancing photocatalytic efficiency. Finally, the article identified the current challenges and outlined the promising future directions for In-based photocatalysts, hoping to provide valuable references for researchers.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Chemistry and
Chemical & Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qian Su
- Department of Chemistry and
Chemical & Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
2
|
Huang X, Du R, Zhang Y, Ren J, Yang Q, Wang K, Ni Y, Yao Y, Ali Soomro R, Guo L, Yang C, Wang D, Xu B, Fu F. Modulating charge oriented accumulation via interfacial chemical-bond on In 2O 3/Bi 2MoO 6 heterostructures for photocatalytic nitrogen fixation. J Colloid Interface Sci 2024; 664:33-44. [PMID: 38458053 DOI: 10.1016/j.jcis.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Photocatalytic nitrogen fixation presents an eco-friendly approach to converting atmospheric nitrogen into ammonia (NH3), but the process faces challenges due to rapid interface charge recombination. Here, we report an innovative charge transfer and oriented accumulation strategy using an In-O-Mo bond-modulated S-scheme heterostructure composed of In2O3/Bi2MoO6 (In/BMO) synthesized using a simple electrostatic assembly. The unique interfacial arrangement with optimal photocatalyst configuration (3 % In/BMO) enabled enhanced photogenerated electron separation and transfer, leading to a remarkable nitrogen fixation rate of approximately 150.9 μmol·gcat-1·h-1 under visible light irradiation. The performance of the photocatalyst was 9-fold and 27-fold higher than that of its pristine components, Bi2MoO6 and In2O3, respectively. The experimental and theoretical evaluation deemed interfacial In-O-Mo bonds crucial for rapid transfer and charge-oriented accumulation. Whereas the generated internal electric field drove the spatial separation and transfer of photo-generated electrons and holes, significantly enhancing the photocatalytic N2-to-NH3 conversion efficiency. The proposed work lays the foundation for designing S-scheme heterostructures with highly efficient interfacial bonds, offering a promising avenue for substantial improvements in photocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Xin Huang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Rui Du
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yuanyuan Zhang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Jingyu Ren
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Qisheng Yang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Kangning Wang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yang Ni
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yuqi Yao
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Razium Ali Soomro
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Li Guo
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Chunming Yang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Danjun Wang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Bin Xu
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Feng Fu
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|