1
|
Shao R, Wang G, Chai J, Lin J, Zhao G, Zeng Z, Wang G. Multifunctional Janus-Structured Polytetrafluoroethylene-Carbon Nanotube-Fe 3O 4/MXene Membranes for Enhanced EMI Shielding and Thermal Management. NANO-MICRO LETTERS 2025; 17:136. [PMID: 39912994 PMCID: PMC11802968 DOI: 10.1007/s40820-025-01647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/29/2024] [Indexed: 02/07/2025]
Abstract
Herein, a novel Janus-structured multifunctional membrane with integrated electromagnetic interference (EMI) shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum-assisted filtration. Interestingly, within the polytetrafluoroethylene (PTFE)-carbon nanotube (CNT)-Fe3O4 layer (FCFe), CNT nanofibers interweave with PTFE fibers to form a stable "silk-like" structure that effectively captures Fe3O4 particles. By incorporating a highly conductive MXene layer, the FCFe/MXene (FCFe/M) membrane exhibits excellent electrical/thermal conductivity, mechanical properties, and flame retardancy. Impressively, benefiting from the rational regulation of component proportions and the design of a Janus structure, the FCFe/M membrane with a thickness of only 84.9 µm delivers outstanding EMI shielding effectiveness of 44.56 dB in the X-band, with a normalized specific SE reaching 10,421.3 dB cm2 g-1, which is attributed to the "absorption-reflection-reabsorption" mechanism. Furthermore, the membrane demonstrates low-voltage-driven Joule heating and fast-response photothermal performance. Under the stimulation of a 3 V voltage and an optical power density of 320 mW cm-2, the surface temperatures of the FCFe/M membranes can reach up to 140.4 and 145.7 °C, respectively. In brief, the FCFe/M membrane with anti-electromagnetic radiation and temperature regulation is an attractive candidate for the next generation of wearable electronics, EMI compatibility, visual heating, thermotherapy, and military and aerospace applications.
Collapse
Affiliation(s)
- Runze Shao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China.
| | - Jialong Chai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Jun Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China
| | - Guizhen Wang
- Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, 570228, People's Republic of China
| |
Collapse
|
2
|
Murray SL, Serajian S, Gnani Peer Mohamed SI, Robinson S, Krishnamoorthy R, Das SR, Bavarian M, Nejati S, Kilic U, Schubert M, Ghashami M. Ultrabroadband Optical Properties of 2D Titanium Carbide MXene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70763-70773. [PMID: 39436815 DOI: 10.1021/acsami.4c12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
MXenes have rapidly ascended as a prominent class of two-dimensional (2D) materials, renowned for their distinctive optical and electrical properties. Despite extensive exploration of MXenes' optical properties, existing studies predominantly focus on the near-infrared (NIR) to the ultraviolet spectral range, leaving the mid-infrared (mid-IR) range relatively uncharted. In this study, we conducted a comprehensive characterization of the intrinsic optical properties of Ti3C2Tx MXene across an ultrabroadband spectral range, spanning from mid-IR (28 meV) to vacuum ultraviolet (VUV, 6.4 eV). For this purpose, Ti3C2Tx MXene films of varying thicknesses were coated on quartz substrates, resulting in two distinct categories: thin film samples with thicknesses below 50 nm and bulk-like samples with thicknesses exceeding 500 nm. Using spectroscopic ellipsometry, we analyzed the optical properties of films of various thicknesses and extracted detailed information on their dielectric functions. Our findings reveal resonances in the mid-IR to VUV range. Employing the Lorentz-Drude model to examine these resonances has uncovered the optical resistivity of MXene films and led to the identification of multiple plasmonic modes active in the visible to NIR range, as well as broad band-to-band transition-like resonances in the mid-IR range. This ultrabroadband optical versatility of Ti3C2Tx MXene is anticipated to bring about a wide range of thermal and optical applications.
Collapse
Affiliation(s)
- Sean L Murray
- Mechanical and Materials Engineering Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Sahand Serajian
- Chemical and Biomolecular Engineering Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | | | - Shiseido Robinson
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Rajavel Krishnamoorthy
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Suprem R Das
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mona Bavarian
- Chemical and Biomolecular Engineering Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Siamak Nejati
- Chemical and Biomolecular Engineering Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ufuk Kilic
- Electrical and Computer Engineering Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Mathias Schubert
- Electrical and Computer Engineering Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Mohammad Ghashami
- Mechanical and Industrial Engineering Department, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Liu C, Jiang C, Shen Y, Zhou B, Liu C, Feng Y. Ultrafine Aramid Nanofiber-Assisted Large-Area Dense Stacking of MXene Films for Electromagnetic Interference Shielding and Multisource Thermal Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38620-38630. [PMID: 38982840 DOI: 10.1021/acsami.4c09426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Polymers are often used as adhesives to improve the mechanical properties of flexible electromagnetic interference (EMI) shielding layered films, but the introduction of these insulating adhesives inevitably reduces the EMI performance. Herein, ultrafine aramid nanofibers (UANF) with a diameter of only 2.44 nm were used as the binder to effectively infiltrate and minimize the insulating gaps in MXene films, for balancing the EMI shielding and mechanical properties. Combining the evaporation-induced scalable assembly assisted by blade coating, flexible large-scale MXene/UANF films with highly aligned and compact MXene stacking are successfully fabricated. Compared with the conventional ANF with a larger diameter of 7.05 nm, the UANF-reinforced MXene film exhibits a "brick-mortar" structure with higher orientation and compacter stacking MXene nanosheets, thus showing the higher mechanical properties, electrical conductivity, and EMI shielding performance. By optimizing MXene content, the MXene/UANF film can achieve the optimal tensile strength of 156.9 MPa, a toughness of 2.9 MJ m-3, satisfactory EMI shielding effectiveness (EMI SE) of 40.7 dB, and specific EMI SE (SSE/t) of 22782.4 dB cm2/g). Moreover, the composite film exhibits multisource thermal conversion functions including Joule heating and photothermal conversion. Therefore, the multifunctional MXene/UANF EMI shielding film with flexibility, foldability, and robust mechanical properties shows the practical potential in complex application environments.
Collapse
Affiliation(s)
- Congqi Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Changlong Jiang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yong Shen
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Bing Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Chuntai Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yuezhan Feng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Tan C, Wen Z, Zhang J, Zhou D, Qiu Q, Han M, Sun Y, Dai N, Hao J. Deep-subwavelength multilayered meta-coatings for visible-infrared compatible camouflage. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2391-2400. [PMID: 39633658 PMCID: PMC11501840 DOI: 10.1515/nanoph-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 12/07/2024]
Abstract
Camouflage is a common technique in nature, enabling organisms to protect themselves from predators. The development of novel camouflage technologies, not only in fundamental science, but also in the fields of military and civilian applications, is of great significance. In this study, we propose a new type of deep-subwavelength four-layered meta-coating consisting of Si, Bi, Si, and Cr from top to bottom with total thickness of only ∼355 nm for visible-infrared compatible camouflage. The visible color and the infrared emission properties of the meta-coating can be independently adjusted. Colorful meta-coating for visible camouflage can be obtained by changing the thickness of top Si layer, while the selective high emissivity in non-atmospheric window for infrared camouflage remains. Due to the deep-subwavelength properties, the meta-coating shows high angle tolerance in both visible and infrared regions. The compatible camouflage capability of our proposed meta-coating in the visible-infrared region is validated under different environments. The deep-subwavelength, angular insensitivity, visible-infrared compatibility and large-area fabrication feasibility promise the meta-coating an effective solution for camouflage in various applications such as military weapons and anti-counterfeiting.
Collapse
Affiliation(s)
- Chong Tan
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
- University of Chinese Academy of Sciences, No. 19A Yu Quan Road, Beijing100049, China
| | - Zhengji Wen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
| | - Jinguo Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
- Department of Materials Science & Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200433, China
| | - Dongjie Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
- University of Chinese Academy of Sciences, No. 19A Yu Quan Road, Beijing100049, China
| | - Qianli Qiu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
- University of Chinese Academy of Sciences, No. 19A Yu Quan Road, Beijing100049, China
| | - Meikang Han
- Department of Materials Science & Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200433, China
| | - Yan Sun
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
| | - Ning Dai
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Jiaming Hao
- Department of Materials Science & Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200433, China
| |
Collapse
|
5
|
Zhao Y, Fu R, Hu F, Yan B, Yang Q, Gu Y, Lan J, Deng C, Chen S. Aqueous Dispersion of Aramid Nanofibers Achieved by Using Tannic Acid for Ultrahigh Strength Films. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38592862 DOI: 10.1021/acsami.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Polymer nanofibers have established a robust foundation and possess immense potential in various emerging fields such as sensors and biotechnology. In this study, aqueous dispersions of aramid nanofibers (ANFs) were successfully prepared by using tannic acid (TA). Morphological analysis revealed that TA effectively prevented self-aggregation of ANFs, and preserved the nanofiber structure during TA-assisted solvent exchange. Subsequently, the ANF and TA/ANF films were fabricated using casting and vacuum-assisted filtration techniques. Notably, the tensile strength of the casting TA/ANF film reached 393.8 MPa, exhibiting a remarkable improvement of 41.3% compared to that of the pure ANF film. These exceptional mechanical properties can be attributed to the well-dispersed nanostructures, hydrogen-bonding interactions, zigzag structures, and fiber-bridging effects. Furthermore, the TA/ANF film demonstrated superior ultraviolet (UV) shielding capabilities, visible transparency properties, and excellent resistance to chemical reagents. The above-mentioned interesting findings demonstrate its potential as a nanofiber-reinforced material for poly(vinyl alcohol) (PVA) composites.
Collapse
Affiliation(s)
- Yinghui Zhao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Runfang Fu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Fei Hu
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station12, 1015 Lausanne, Switzerland
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yingchun Gu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jianwu Lan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Cong Deng
- Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|