1
|
Xu M, Lu J, Sun Z, Yang M, Sheng B, Chen M, Chen J, Zhang Q, Han X. Lanthanum doping and surface Li 3BO 3 passivating layer enabling 4.8 V nickel-rich layered oxide cathodes toward high energy lithium-ion batteries. J Colloid Interface Sci 2024; 673:386-394. [PMID: 38878373 DOI: 10.1016/j.jcis.2024.05.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/31/2024] [Indexed: 07/26/2024]
Abstract
Single crystalline Ni-rich layered oxide cathodes show high energy density and low cost, have been regarded as one of the most promising candidates for next generation lithium-ion batteries (LIBs). Extending the cycling voltage window will significantly improve the energy density, however, suffers from bulk structural and interfacial chemistry degradation, leading to rapidly cycle performance deterioration. Here, we propose a dual-modification strategy to synthesize La doping and Li3BO3 (LBO) coating layers modified LiNi0.8Co0.1Mn0.1O2 (NCM811) by a facile one-step heating treatment processing. In-situ EIS and XRD, ex-situ XPS techniques are applied to demonstrate that the La diffused amorphous domains and Li3BO3 passivating layers dampen the lattice distortion, enhance the interfacial chemistry behavior as well as lithium ion transportation kinetics. Specifically, surface La doping amorphous domains successfully suppress the intense lattice stress and volume changes induced by the phase transitions during lithiation/delithiation, thus avoiding the intergranular crack and enhancing the mechanical stability of the material. Moreover, the LBO layer formed by the consumption of residual lithium prevents successive parasitic reactions at the interface as well as provides rapid Li-ion diffusion channels. Furthermore, the coating layer also diminishes the residual lithium compounds, increasing the atmosphere stability and safety of LIBs. Consequently, the La doping and LBO coating NCM811 exhibits an exceptional initial specific capacity (230.6 mAh/g) at 0.5C under a high cutoff voltage of 4.8 V, and a 73.8 % capacity retention following 100 cycles. In addition, a superior specific capacity of 133.8 mAh/g is provided even at a high current density (4C). Our work paves a promising road to tackle the integral structure deterioration and interfacial instability of Ni-rich cathodes.
Collapse
Affiliation(s)
- Min Xu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Junjie Lu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen, Fujian 361005, China
| | - Ming Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bifu Sheng
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Minfeng Chen
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jizhang Chen
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Han
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
2
|
Kumar D, Ramesha K. Comprehensive Study of Ti and Ta Co-Doping in Ni-Rich Cathode Material LiNi 0.8Mn 0.1Co 0.1O 2 Towards Improving the Electrochemical Performance. Chemphyschem 2024; 25:e202400064. [PMID: 38575386 DOI: 10.1002/cphc.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Layered Ni-rich oxides (LiNi1-x-yCoxMnyO2) cathode materials are of current interest in high-energy-demanding applications, such as electric vehicles because of high discharge capacity and high intercalation potential. Here, the effect of co-doping a small amount of Ti and Ta on the crystal structure, morphology, and electrochemical properties of high Ni-rich cathode material LiNi0.8Mn0.1Co0.1-x-yTixTayO2 (0.0≤x+y≤0.2) was systematically investigated. This work demonstrates that an optimum level of Ti and Ta doping is beneficial towards enhancing electrochemical performance. The optimal Ti4+ and Ta5+ co-doped cathode LiNi0.8Mn0.1Co0.09Ti0.005Ta0.005O2 exhibits a superior initial discharge capacity of 161.1 mAh g-1 at 1 C, and excellent capacity retention of 87.1 % after 250 cycles, compared to the pristine sample that exhibits only 59.8 % capacity retention. Moreover, the lithium-ion diffusion coefficients for the co-doped cathode after the 3rd and 50th cycles are 9.9×10-10 cm2 s-1 and 9.3×10-10 cm2 s-1 respectively, which is higher than that of the pristine cathode (3.3×10-10 cm2 s-1 and 2.5×10-10 cm2 s-1 respectively). Based on these studies, we conclude that Ti and Ta co-doping enhances structural stability by mitigating irreversible phase transformation, improving Li-ion kinetics by expanding interlayer spacing, and nanosizing primary particles, thereby stabilizing high-nickel cathode materials and significantly enhancing cyclability.
Collapse
Affiliation(s)
- Deepak Kumar
- CSIR-Central Electrochemical Research Institute, Madras Unit, CSIR Madras Complex, Taramani, Chennai, 600113, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K Ramesha
- CSIR-Central Electrochemical Research Institute, Madras Unit, CSIR Madras Complex, Taramani, Chennai, 600113, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Pan X, Liu T, Hou Q. Artificial Layer Construction via Cosolvent Enables Stable Ni-Rich Cathodes for Enhanced Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470147 DOI: 10.1021/acsami.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Ni-rich cathodes have recently gained significant attention as next-generation cathodes for lithium-ion batteries. However, their relatively high oxidative surface should be reduced to control the high surface reactivity because the capacity retention decreases rapidly in the batteries. Herein, a simple and effective method to pretreat LiNi0.8Mn0.1Co0.1O2 (NMC811) particles using a cosolvent for improving the battery performance is reported. Imitating the interfacial reaction in practical cells, an artificial layer is created via a spontaneous redox reaction between the cathode and the organic solvent. The artificial layer comprises metal-organic compounds with reduced transition-metal cations. Benefiting from the artificial layer, the cells deliver high capacity retention at a high current density and better rate capability, which might result from the low and stable interfacial resistance of the modified NMC811 cathode. Our approach can effectively reduce the high oxidative surface of most oxide cathode materials and induce a long cyclic lifespan and high capacity retention in most battery systems.
Collapse
Affiliation(s)
- Xiaona Pan
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Tianyi Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Qingjie Hou
- College of Resource and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|