1
|
Jin L, Ao Y, Xu T, Zou Y, Yang W. Recent advances in MXene-based composites for piezoelectric sensors. NANOSCALE 2024; 16:21673-21696. [PMID: 39506524 DOI: 10.1039/d4nr03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Piezoelectric sensors are crucial in medical, industrial, and consumer electronics applications, yet their performance and sensitivity often fall short due to the limitations in current piezoelectric materials. To address these deficiencies, significant research has been directed towards developing composite materials that enhance piezoelectric properties by integrating piezoelectric materials with various fillers. MXenes, a novel class of 2D transition metal carbides/nitrides, exhibit remarkable properties such as high electrical conductivity, mechanical strength, and chemical stability. These characteristics, along with a high surface area and hydrophilicity, make MXenes an ideal additive for preparing piezoelectric composites with improved properties. Despite existing reviews on MXenes in sensor applications, only a few have systematically explored their role in piezoelectric sensors. This review provides a comprehensive analysis of MXene-based piezoelectric sensors, examining the impact of different composites on piezoelectric properties, synthesis methods, structural designs, and application areas. While promising, challenges such as scalability, reproducibility, and environmental stability must be addressed to fully realize the potential of MXene-based composites. This comprehensive analysis highlights the advancements, opportunities for further development, and the transformative potential of MXenes in the next generation of high-performance, multifunctional piezoelectric sensors.
Collapse
Affiliation(s)
- Long Jin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yong Ao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Tianpei Xu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yulin Zou
- Sichuan Yanjiang Panning Expressway Co., Ltd, Xichang 615000, China
- Sichuan Highway Planning, Survey, Design and Research Institute Ltd, Chengdu 610041, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
2
|
Iravani S, Khosravi A, Nazarzadeh Zare E, Varma RS, Zarrabi A, Makvandi P. MXenes and artificial intelligence: fostering advancements in synthesis techniques and breakthroughs in applications. RSC Adv 2024; 14:36835-36851. [PMID: 39574930 PMCID: PMC11580157 DOI: 10.1039/d4ra06384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
This review explores the synergistic relationship between MXenes and artificial intelligence (AI), highlighting recent advancements in predicting and optimizing the properties, synthesis routes, and diverse applications of MXenes and their composites. MXenes possess fascinating characteristics that position them as promising candidates for a variety of technological applications, including energy storage, sensors/detectors, actuators, catalysis, and neuromorphic systems. The integration of AI methodologies provides a robust toolkit to tackle the complexities inherent in MXene research, facilitating property predictions and innovative applications. We discuss the challenges associated with the predictive capabilities for novel properties of MXenes and emphasize the necessity for sophisticated AI models to unravel the intricate relationships between structural features and material behaviors. Moreover, we examine the optimization of synthesis routes for MXenes through AI-driven approaches, underscoring the potential for streamlining and enhancing synthesis processes via data-driven insights. Furthermore, the role of AI is elucidated in enabling targeted applications of MXenes across multiple domains, illustrating the correlations between MXene properties and application performance. The synergistic integration of MXenes and AI marks the dawn of a new era in material design and innovation, with profound implications for advancing diverse technological frontiers.
Collapse
Affiliation(s)
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University Istanbul 34959 Turkiye
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University Damghan 36716-45667 Iran
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos 13565-905 São Carlos SP Brazil
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University Istanbul Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University Taoyuan Taiwan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital 324000 Quzhou Zhejiang China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University Chennai-600077 India
- University Centre for Research & Development, Chandigarh University Mohali Punjab 140413 India
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh 174103 India
| |
Collapse
|
3
|
Zheng K, Vegge T, Castelli IE. Giant In-Plane Flexoelectricity and Radial Polarization in Janus IV-VI Monolayers and Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19369-19378. [PMID: 38587821 DOI: 10.1021/acsami.4c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nanotubes have established a new paradigm in nanoscience because of their atomically thin geometries and intriguing properties. However, because of their typical metastability compared to their 2D and 3D counterparts, it is still fundamentally challenging to synthesize nanotubes with controlled size. New strategies have been suggested for synthesizing nanotubes with a controlled geometry. One of these is considering Janus 2D layers, which can self-roll to form a nanotube. Herein, we study 412 nanotubes (along the armchair and zigzag directions) based on 36 Janus IV-VI compounds using density functional theory (DFT) calculations. By investigating the energy-radius relationship using structural models and Bayesian predictions, the most stable nanotubes show negative strain energies and radii below 20 Å, where curvature effects can play a significant role. The band structures show that the selected nanotubes exhibit sizable band gaps and size-dependent electronic properties. More strikingly, the flexoelectricity along the in-plane directions and radial directions in these nanotubes is significantly larger than that in other nanotubes and their 2D counterparts. This work opens up an avenue of structure-property relationships of Janus IV-VI nanotubes and demonstrates giant flexoelectricity in these nanotubes for future electronic and energy applications.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Lyngby Kgs., Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Lyngby Kgs., Denmark
| | - Ivano E Castelli
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Lyngby Kgs., Denmark
| |
Collapse
|