1
|
Wu H, Diao J, Li X, Yue D, He G, Jiang X, Li P. Hydrogel-based 3D printing technology: From interfacial engineering to precision medicine. Adv Colloid Interface Sci 2025; 341:103481. [PMID: 40132296 DOI: 10.1016/j.cis.2025.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Advances in 3D printing technology and the development of hydrogel-based inks have significantly enhanced the potential of precision medicine, promoting progress in medical diagnosis and treatment. The development of 3D printing enables the fabrication of complex gradient structures that emulate natural tissue environments, while advancements in interface engineering facilitate the precise control of interface properties, thereby enhancing the performance of hydrogels in biomedical applications. This review focuses on the latest advancements in three critical 3D printing application areas: efficient real-time detection, drug delivery systems, and regenerative medicine. The application of 3D printing technology enhances nucleic acid-based molecular diagnostic platforms and wearable biosensors for real-time monitoring of physiological parameters, thereby providing robust support for early disease diagnosis. Additionally, it facilitates the development of targeted and controlled drug delivery systems, which offer promising methods for efficient drug utilization, and enables the construction of complex tissue and organ structures with bioactivity and functionality, providing new solutions for regenerative medicine. Collectively, these advancements propel the ongoing progress and development of precision medicine. Furthermore, the challenges associated with 3D printing technology in these three major applications are discussed along with an outlook on prospects.
Collapse
Affiliation(s)
- Haojie Wu
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jibo Diao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinrong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
2
|
Zheng Z, Williams GR, Guo H, Zheng Y, Xiu M, Zhang Y, Zhang H, Wang K, Xia J, Wang Y, Zhu LM. A Bi 2O 3-TiO 2 Heterojunction for Triple-Modality Cancer Theranostics. Int J Nanomedicine 2025; 20:5593-5610. [PMID: 40321808 PMCID: PMC12049674 DOI: 10.2147/ijn.s511891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose Owing to the limitations of single-mode cancer treatments, combination therapies have attracted much attention. However, constructing a platform for combination therapies in a simple and effective way and improving the overall treatment effect remains a challenge. Our aim was to combine sonodynamic therapy, radiotherapy and chemotherapy together and improve therapeutic outcomes within one nanoplatform. Methods In this work, we sought to exploit the properties of nanoscale heterojunctions to this end. A multifunctional Bi2O3-TiO2@polydopamine-doxorubicin (BTPD) nanoparticle platform was constructed as an anti-cancer theranostic. Under ultrasound irradiation, the Bi2O3-TiO2 core can generate singlet oxygen to damage tumor cells. Meanwhile, the high-Z Bi2O3 can attenuate the energy of X-rays and scatter secondary electrons to enhance radiation damage in the tumor. A thin coating of polydopamine (PDA) increases the biocompatibility but also gives the particles the ability for photoacoustic imaging. Doxorubicin, a DNA repair inhibitor which can hinder tumor recovery from radiation damage, was loaded onto the PDA. Results A comprehensive series of in vitro and in vivo assays demonstrated that the nanoparticles were effectively taken up into cancer cells, where they could induce ROS production and cause cell death. In vivo, this led to a marked reduction in tumor volume in a murine 4T1 cancer model. Conclusion The formulations developed here have significant potential for future investigation and exploration in the treatment of cancer.
Collapse
Affiliation(s)
- Zhiyu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| | | | - Honghua Guo
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai, People’s Republic of China
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| | - Mengting Xiu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| | - Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| | - Huan Zhang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-Immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jindong Xia
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai, People’s Republic of China
| | - Yu Wang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-Immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Batool A, Kopp I, Kubeil M, Bachmann M, Andrews PC, Stephan H. Targeted bismuth-based materials for cancer. Dalton Trans 2025; 54:5614-5639. [PMID: 40040450 DOI: 10.1039/d5dt00163c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The use of bismuth and its compounds in biomedicine has developed rapidly in recent years. Due to their unique properties, there are great opportunities for the development of new non-invasive strategies for the early diagnosis and effective treatment of cancers. This perspective highlights key fabrication methods to generate well-defined and clinically relevant bismuth materials of varying characteristics. On the one hand, this opens up a wide range of possibilities for unimodal and multimodal imaging. On the other hand, effective treatment strategies, which are increasingly based on combinatorial therapies, are given a great deal of attention. One of the biggest challenges remains the selective tumour targeting, whether active or passive. Here we present an overview on new developments of bismuth based materials moving forward from a simple enrichment at the tumour site via uptake by the mononuclear phagocytic system (MPS) to a more active tumour specific targeting via covalent modification with tumour-seeking molecules based on either small or antibody-derived molecules.
Collapse
Affiliation(s)
- Amna Batool
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Ina Kopp
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
4
|
Xin L, Ning S, Wang H, Shi R. Tumor Microenvironment Responsive and Platelet Membrane Coated Polydopamine Nanoparticles for Cancer Radiosensitization by Inducing Cuproptosis. Int J Nanomedicine 2025; 20:3643-3652. [PMID: 40125433 PMCID: PMC11930256 DOI: 10.2147/ijn.s504148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Background Cuproptosis, distinguished from apoptosis, necroptosis, pyroptosis, and ferroptosis, is a current form of programmed cell death that provides novel strategies for tumor therapy. Nanotechnology inducing cuproptosis showed potential in tumor ablation. However, these strategies might induce cellular damage due to a lack of tumor-targeting ability or insufficient tumor inhibition alone. Methods Here, biomimetic copper-doped polydopamine nanoparticles (PC NPs) were developed to specifically induce tumor cell cuproptosis to enhance radiotherapy (RT). PC NPs were characterized before application for tumor ablation. Results These PC NPs improve tumor targeting and accumulation. After entering the tumor region, PC degrades in cells responsive to acidic tumor microenvironment (TME). Next, Cu2+ is reduced to Cu+ after consuming overexpressed glutathione (GSH), which induces dihydrolipoamide S-acetyltransferase (DLAT) aggression and cuproptosis. Under RT, reactive oxygen species (ROS) are generated and consume GSH, leading to cuproptosis. The decreasing of GSH content in tumor tissues can improve the treatment effect of RT by inhibiting self-repair of tumor cells, hindering cell survival and proliferation. The combination of PC and RT alleviate tumor growth, reaching a tumor growth inhibition rate of 93.0%. Conclusion This tumor-specific targeting nano platform is a valuable radiosensitizer responsive to TME for improving therapeutic efficacy against tumors.
Collapse
Affiliation(s)
- Le Xin
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, People’s Republic of China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530031, People’s Republic of China
| | - Hongwei Wang
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, People’s Republic of China
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Runze Shi
- The Second Ward of Breast Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin, 150086, People’s Republic of China
| |
Collapse
|
5
|
Huang X, Ge W, Li S, Huang R, Wang F. Transferrin-Based Bismuth Nanoparticles for Radiotherapy with Immunomodulation Against Orthotopic Glioma. Adv Healthc Mater 2025; 14:e2404144. [PMID: 39797464 DOI: 10.1002/adhm.202404144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy. The proposed protein-based strategy provides TBNPs with BBB-crossing ability and prevents off-target toxicity. Cellular experiments following 4 Gy of X-ray irradiation reveal that TBNPs increase DNA damage in glioma cells and trigger immunomodulation, thereby inducing immunogenic cell death. Furthermore, TBNPs effectively inhibit tumor growth through synergistic radiotherapy and immunotherapy in an orthotopic glioma mouse model. The findings highlight TBNPs as promising radiosensitizers for effective and biosafe radiotherapy with immunomodulation.
Collapse
Affiliation(s)
- Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Ge
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuxian Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruofan Huang
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, 200240, P. R. China
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Song Y, Wang Y, Man J, Xu Y, Zhou G, Shen W, Chao Y, Yang K, Pei P, Hu L. Chimeric Antigen Receptor Cells Solid Tumor Immunotherapy Assisted by Biomaterials Tools. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10246-10264. [PMID: 39903799 DOI: 10.1021/acsami.4c20275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Chimeric antigen receptor (CAR) immune cell therapies have revolutionized oncology, particularly in hematological malignancies, yet their efficacy against solid tumors remains limited due to challenges such as dense stromal barriers and immunosuppressive microenvironments. With advancements in nanobiotechnology, researchers have developed various strategies and methods to enhance the CAR cell efficacy in solid tumor treatment. In this Review, we first outline the structure and mechanism of CAR-T (T, T cell), CAR-NK (NK, natural killer), and CAR-M (M, macrophage) cell therapies and deeply analyze the potential of these cells in the treatment of solid tumors and the challenges they face. Next, we explore how biomaterials can optimize these treatments by improving the tumor microenvironment, controlling CAR cell release, promoting cell infiltration, and enhancing efficacy. Finally, we summarize the current challenges and potential solutions, emphasize the effective combination of biomaterials and CAR cell therapy, and look forward to its future clinical application and treatment strategies. This Review provides important theoretical perspectives and practical guidance for the future development of more effective solid tumor treatment strategies.
Collapse
Affiliation(s)
- Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yihua Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Sun R, Wang M, Zeng T, Chen H, Yoshitomi T, Takeguchi M, Kawazoe N, Yang Y, Chen G. Scaffolds functionalized with matrix metalloproteinase-responsive release of miRNA for synergistic magnetic hyperthermia and sensitizing chemotherapy of drug-tolerant breast cancer. Bioact Mater 2025; 44:205-219. [PMID: 39502841 PMCID: PMC11535879 DOI: 10.1016/j.bioactmat.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Combining hyperthermia and chemotherapy for maximum anticancer efficacy remains a challenge because drug-tolerant cancer cells often evade this synergistic treatment due to drug resistance and asynchronous drug release. In this study, multifunctional scaffolds were designed to efficiently treat drug-tolerant breast cancer by improving the sensitization of breast cancer cells and synchronizing anticancer drug release with magnetic hyperthermia. The scaffolds contained microRNA-encapsulated matrix metalloproteinase-cleavable liposomes, doxorubicin-encapsulated thermoresponsive liposomes and Fe3O4 nanoparticles. The scaffolds could release microRNA specifically to improve the sensitization of breast cancer cells to anticancer drugs. The scaffolds also showed excellent hyperthermia effects under alternating magnetic field irradiation. Moreover, doxorubicin release was synchronized with magnetic hyperthermia. In vitro and in vivo studies demonstrated that the scaffolds effectively reduced drug resistance and eliminated doxorubicin-tolerant MDA-MB-231 cells through the synergistic effect of magnetic hyperthermia and sensitizing chemotherapy. Additionally, the scaffolds could support the proliferation and adipogenic differentiation of stem cells for adipose tissue regeneration after killing cancer cells at a late therapeutic stage. These composite scaffolds offer an innovative strategy for treating breast cancer, with synergistic anticancer effects and regenerative functions.
Collapse
Affiliation(s)
- Rui Sun
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Man Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Masaki Takeguchi
- Research Center for Energy and Environmental Materials, National Institute for Materials Science, Ibaraki, 305-0047, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki, 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
8
|
Yao J, Cui Z, Zhang F, Li H, Tian L. Biomaterials enhancing localized cancer therapy activated anti-tumor immunity: a review. J Mater Chem B 2024; 13:117-136. [PMID: 39544081 DOI: 10.1039/d4tb01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Localized cancer therapies such as radiotherapy, phototherapy, and chemotherapy are precise cancer treatment strategies aimed at minimizing systemic side effects. However, cancer metastasis remains the primary cause of mortality among cancer patients in clinical settings, and localized cancer treatments have limited efficacy against metastatic cancer. Therefore, researchers are exploring strategies that combine localized therapy with immunotherapy to activate robust anti-tumor immune responses, thereby eradicating metastatic cancer. Biomaterials, as novel materials, exhibit great potential in biomedical applications and have achieved great progress in clinic translation. This review introduces biomaterials and their applications in research focused on enhancing localized cancer treatment activated anti-tumor immunity. Additionally, the current challenges and future directions of biomaterials are also discussed, providing insights and references for related research.
Collapse
Affiliation(s)
- Jipeng Yao
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhencun Cui
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Haidong Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
9
|
Hsu CY, Allela OQB, Hussein AM, Mustafa MA, Kaur M, Alaraj M, Al-Hussainy AF, Radi UK, Ubaid M, Idan AH, Alsaikhan F, Narmani A, Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:564-586. [PMID: 39639430 DOI: 10.1080/21691401.2024.2436350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Cancer has a high rate of incidence and mortality throughout the world. Although several conventional approaches have been developed for the treatment of cancer, such as surgery, chemotherapy, radiotherapy and thermal therapy, they have remarkable disadvantages which result in inefficient treatment of cancer. For example, immunogenicity, prolonged treatment, non-specificity, metastasis and high cost of treatment, are considered as the major drawbacks of chemotherapy. Therefore, there is a fundamental requirement for the development of breakthrough technologies for cancer suppression. Polysaccharide-based drug delivery systems (DDSs) are the most reliable drug carriers for cancer therapy. Polysaccharides, as a kind of practical biomaterials, are divided into several types, including chitosan, alginates, dextran, hyaluronic acid, cyclodextrin, pectin, etc. Polysaccharides are extracted from different natural resources (like herbal, marine, microorganisms, etc.). The potential features of polysaccharides have made them reliable candidates for therapeutics delivery to cancer sites; the simple purification, ease of modification and functionalization, hydrophilicity, serum stability, appropriate drug loading capacity, biocompatibility, bioavailability, biodegradability and stimuli-responsive and sustained drug release manner are considerable aspects of these biopolymers. This review highlights the practical applications of polysaccharides-based DDSs in pharmaceutical science and cancer therapy.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Applied Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Duggal I, Kim J, Zhang Y, Wang J, Lu A, Maniruzzaman M. Additive manufacturing to fight cancer: Current Applications and Future Directions. Drug Discov Today 2024; 29:104218. [PMID: 39613181 DOI: 10.1016/j.drudis.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
3D printing has emerged as a powerful tool demonstrating effectiveness in early screening and targeted delivery for various types of tumors. Although the applications of additive manufacturing for cancer are widespread, the issues of scaling up, quality control and specificity remain. This review presents a comprehensive analysis of the current landscape of use of additive manufacturing in cancer diagnostics and treatment. Furthermore, it proceeds to elucidate the prominent current and future applications of 4D- and 5D-printed micro-swimmers in cancer treatment with particular emphasis on the significant progress made in magnetic, biological and light-based propulsion microrobots. Lastly, the current limitations and future research directions are enumerated. In summary, this paper serves as a comprehensive exploration of the remarkable contributions of additive manufacturing to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ishaan Duggal
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Joon Kim
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA; PharmE3D Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Anqi Lu
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA; PharmE3D Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
11
|
Donati L, Valicenti ML, Giannoni S, Morena F, Martino S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int J Mol Sci 2024; 25:10386. [PMID: 39408716 PMCID: PMC11476540 DOI: 10.3390/ijms251910386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Mechanosensing and mechanotransduction pathways between the Extracellular Matrix (ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development, morphology, maintenance, and function. Understanding these mechanisms involves creating an appropriate cell support that elicits signals to guide cellular functions. In this context, polymers can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural physiological system. The generated specific stimuli depend on the different natural or synthetic origins of the polymers, the chemical composition, the assembly structure, and the physical and surface properties of biomaterials. This review discusses the most widely used polymers and their customization to develop biomaterials with tailored properties. It examines how the characteristics of biomaterials-based polymers can be harnessed to replicate the functions of biological cells, making them suitable for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Leonardo Donati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Maria Luisa Valicenti
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Samuele Giannoni
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
- Centro di Eccellenza Materiali Innovativi Nanostrutturati per Applicazioni Chimiche Fisiche e Biomediche (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
12
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
13
|
Yildiz SN, Entezari M, Paskeh MDA, Mirzaei S, Kalbasi A, Zabolian A, Hashemi F, Hushmandi K, Hashemi M, Raei M, Goharrizi MASB, Aref AR, Zarrabi A, Ren J, Orive G, Rabiee N, Ertas YN. Nanoliposomes as nonviral vectors in cancer gene therapy. MedComm (Beijing) 2024; 5:e583. [PMID: 38919334 PMCID: PMC11199024 DOI: 10.1002/mco2.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024] Open
Abstract
Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mahshid Deldar Abad Paskeh
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of BiologyFaculty of ScienceIslamic Azad UniversityScience and Research BranchTehranIran
| | - Alireza Kalbasi
- Department of PharmacyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amirhossein Zabolian
- Department of OrthopedicsShahid Beheshti University of Medical SciencesTehranIran
| | - Farid Hashemi
- Department of Comparative BiosciencesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Kiavash Hushmandi
- Department of Clinical Sciences InstituteNephrology and Urology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mehrdad Hashemi
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehdi Raei
- Department of Epidemiology and BiostatisticsSchool of HealthBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer ScienceDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Department of Translational SciencesXsphera Biosciences Inc.BostonMassachusettsUSA
| | - Ali Zarrabi
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular DiseasesDepartment of CardiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Gorka Orive
- NanoBioCel Research GroupSchool of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology ‐ UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- The AcademiaSingapore Eye Research InstituteSingaporeSingapore
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM−National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
14
|
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T. Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell death mechanisms. Cancer Lett 2024; 591:216860. [PMID: 38583650 DOI: 10.1016/j.canlet.2024.216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri, 39039, Türkiye.
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianfeng Wang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Ting Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
15
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|