1
|
Chuang SC, Yu SA, Hung PC, Chuang AEY, Liang JW, Rethi L, Chen CK, Fang HW, Nguyen HT, Lu HT. Transformative lactera-polypyrrole@carrageenan microparticles leveraging NIR for skin regeneration and stress relief. Int J Biol Macromol 2025; 316:144436. [PMID: 40403819 DOI: 10.1016/j.ijbiomac.2025.144436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Effective wound healing remains a significant challenge in regenerative medicine, particularly in minimizing inflammation and promoting scarless recovery. This study introduces a bioengineered LAC-PPy@Car MF composite, designed to leverage near-infrared (NIR)-induced photothermal therapy alongside biotherapeutics to facilitate tissue regeneration. The composite integrates the photothermal properties of polypyrrole (PPy) with the anti-inflammatory and regenerative potential of Lactera (LAC) and Carrageenan (Car). Upon NIR activation, the composite generates localized mild-hyperthermia, reducing oxidative stress, enhancing Aryl Hydrocarbon Receptor (AhR) activity, and upregulating heat shock proteins (HSP). These effects synergistically create a bioactive environment conducive to cellular proliferation and tissue repair. Biochemical evaluations demonstrate that LAC-PPy@Car MF effectively reduces oxidative stress, stimulates fibroblast migration, and promotes the proliferation of skin cells. Immunofluorescence staining reveals significant activation of AhR and HSP in treated tissues, correlating with cellular proliferation and improved skin architecture. The NIR-triggered photothermal effect contributes to the therapeutic potential of the composite, ensuring precise and minimally invasive treatment for burn injuries. These findings position phototherapeutic LAC-PPy@Car MF as a promising candidate for advanced wound healing applications. Its dual functionality, combining photothermal therapy with bioactive healing properties, offers a transformative approach to regenerative medicine, paving the way for improved clinical outcomes in wound care.
Collapse
Affiliation(s)
- Sih-Chi Chuang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; Doctoral Program of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Shih-An Yu
- Hsuan Chen Technology CO., LTD., New Taipei City 22055, Taiwan
| | - Pei-Chia Hung
- Hsuan Chen Technology CO., LTD., New Taipei City 22055, Taiwan
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| | - Jia-Wei Liang
- Hsuan Chen Technology CO., LTD., New Taipei City 22055, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Kuang Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan.; School of Medicine, Chang Gung University, Taoyuan, Taiwan.; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Hsien-Tsung Lu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
2
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|