Ran L, Lu Y, Chen L, He M, Deng Z. Design, Synthesis, and Application of Immobilized Enzymes on Artificial Porous Materials.
ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025;
12:e2500345. [PMID:
40305741 PMCID:
PMC12120765 DOI:
10.1002/advs.202500345]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Enzymes have been recognized as highly efficient biocatalysts, whereas characteristics such as poor stability and single reaction type greatly significantly limit their wide application. Hence, the exploitation of suitable carriers for immobilized enzymes enables the provision of a protective layer for the enzyme, with the capability of chemical and biological cascade catalysis. Among the various immobilization carriers, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs) have been emerging as a promising strategy to surpass the inherent instability and other limitations of free enzymes. Specifically, the integration of such artificial porous materials as carriers improves the stability and reusability of enzymes, while simultaneously affording a platform for multifunctional applications. Herein, this review systematically discusses the various preparation strategies and advantages of artificial porous materials, while elucidating the effects of different immobilization methods on enzyme activity. Furthermore, the innovative applications of artificial porous materials as multifunctional carriers in the field of enzyme immobilization fields such as enzyme carriers, photocatalysts, chemical catalysts and sensing are also comprehensively summarized here, thus demonstrating their multifunctional characteristics and promising applications in addressing complex biotransformation challenges.
Collapse