1
|
Bouyahya C, Bikiaris ND, Zamboulis A, Kyritsis A, Majdoub M, Klonos PA. Crystallization and molecular mobility in renewable semicrystalline copolymers based on polycaprolactone and polyisosorbide. SOFT MATTER 2022; 18:9216-9230. [PMID: 36426754 DOI: 10.1039/d2sm01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of novel block copolymers based on two biodegradable polymers, poly(ε-caprolactone), PCL, and poly(isosorbide), PIS, with PIS fractions 5, 10, and 25 wt%, are studied herein. The aim is to assess the effects of the amorphous PIS phase on the properties of the semicrystalline PCL (majority), in addition to the synthesis strategy. The latter involved the polymerization of caprolactone onto initial PIS of low molar mass, resulting, thus, in gradually shorter PCL blocks when the starting amount of PIS is increased. The structure-property relationship investigation, with an emphasis on molecular mobility and crystallization, involves the following sum of complementary techniques: differential scanning calorimetry, dielectric spectroscopy, polarized optical microscopy and X-ray diffraction. The molecular mobility map for these PCL/PIS and initial PIS is drawn here for the first time. Despite the high glass transition temperature of PIS (Tg ∼ 51 °C) compared to that of PCL (-66 °C), the Tg of the copolymers barely changes, as it is mainly ruled by crystallinity. The latter seems to be facilitated in the copolymers, in both the amount and the rate. The local molecular mobility of PCL and PCL/PIS consists of faster γPCL relaxation which is unaffected in the copolymers, whereas the slower βPCL process arising from the backbone ester group rotation exhibits a systematic deceleration in the presence of PIS. A connection between such local motions and the corresponding segmental α relaxation, observed previously in other polyesters, is also found to be true here. Apart from that, the dielectric Tg as well as the cooperativity of the polymer chains drop moderately, which indicates spatial confinement between the PCL crystals, whereas correlations with the looser lamellar chain packing within the spherulites are gained. The relaxations of initial PIS, i.e., γPIS, βPIS and αPIS, could not be resolved within the copolymers. Along with other properties, such as ionic conductivity, we conclude to the homogeneity of our systems, with sufficient PCL/PIS distribution.
Collapse
Affiliation(s)
- Chaima Bouyahya
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, 5000 Monastir, Tunisia.
| | - Nikolaos D Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Mustapha Majdoub
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, 5000 Monastir, Tunisia.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| |
Collapse
|
2
|
Molecular mobility, crystallization and melt-memory investigation of molar mass effects on linear and hydroxyl-terminated Poly(ε-caprolactone). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Basheer BV, George JJ, Siengchin S, Parameswaranpillai J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100429] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Kasmi N, Wahbi M, Papadopoulos L, Terzopoulou Z, Guigo N, Sbirrazzuoli N, Papageorgiou GZ, Bikiaris DN. Synthesis and characterization of two new biobased poly(pentylene 2,5-furandicarboxylate-co-caprolactone) and poly(hexamethylene 2,5-furandicarboxylate-co-caprolactone) copolyesters with enhanced enzymatic hydrolysis properties. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Papageorgiou DG, Bikiaris DN, Papageorgiou GZ. Synthesis and controlled crystallization of in situ prepared poly(butylene-2,6-naphthalate) nanocomposites. CrystEngComm 2018. [DOI: 10.1039/c8ce00260f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polymorphic nature of poly(butylene-2,6-naphthalate) (PBN) and the in situ prepared PBN-based nanocomposites was thoroughly evaluated.
Collapse
Affiliation(s)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology
- Department of Chemistry
- Aristotle University of Thessaloniki
- Thessaloniki
- Greece
| | | |
Collapse
|
6
|
Chen J, Liu B, Gao X, Xu D. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 2018; 8:28048-28085. [PMID: 35542749 PMCID: PMC9083916 DOI: 10.1039/c8ra04205e] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
This paper provides an overview of recent advances in research on the interfacial characteristics of carbon nanotube–polymer nanocomposites. The state of knowledge about the chemical functionalization of carbon nanotubes as well as the interaction at the interface between the carbon nanotube and the polymer matrix is presented. The primary focus of this paper is on identifying the fundamental relationship between nanocomposite properties and interfacial characteristics. The progress, remaining challenges, and future directions of research are discussed. The latest developments of both microscopy and scattering techniques are reviewed, and their respective strengths and limitations are briefly discussed. The main methods available for the chemical functionalization of carbon nanotubes are summarized, and particular interest is given to evaluation of their advantages and disadvantages. The critical issues related to the interaction at the interface are discussed, and the important techniques for improving the properties of carbon nanotube–polymer nanocomposites are introduced. Additionally, the mechanism responsible for the interfacial interaction at the molecular level is briefly described. Furthermore, the mechanical, electrical, and thermal properties of the nanocomposites are discussed separately, and their influencing factors are briefly introduced. Finally, the current challenges and opportunities for efficiently translating the remarkable properties of carbon nanotubes to polymer matrices are summarized in the hopes of facilitating the development of this emerging area. Potential topics of oncoming focus are highlighted, and several suggestions concerning future research needs are also presented. The state of research on the characteristics at the interface in polymer nanocomposites is reviewed. Special emphasis is placed on the recent advances in the fundamental relationship between interfacial characteristics and nanocomposite properties.![]()
Collapse
Affiliation(s)
- Junjie Chen
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Baofang Liu
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Xuhui Gao
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Deguang Xu
- Department of Energy and Power Engineering
- School of Mechanical and Power Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| |
Collapse
|
7
|
Zhang YH, Liu FQ, Zhu CQ, Zhang XP, Wei MM, Wang FH, Ling C, Li AM. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:290-298. [PMID: 28183018 DOI: 10.1016/j.jhazmat.2017.01.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/07/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H2PO4- from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H2PO4- were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H2PO4- accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H2PO4-. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.
Collapse
Affiliation(s)
- Yan-Hong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Fu-Qiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Chang-Qing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Xiao-Peng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Meng-Meng Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Feng-He Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Chen Ling
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
8
|
Garate H, Bianchi M, Pietrasanta LI, Goyanes S, D'Accorso NB. High-Energy Dissipation Performance in Epoxy Coatings by the Synergistic Effect of Carbon Nanotube/Block Copolymer Conjugates. ACS APPLIED MATERIALS & INTERFACES 2017; 9:930-943. [PMID: 28004915 DOI: 10.1021/acsami.6b13212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hierarchical assembly of hard/soft nanoparticles holds great potential as reinforcements for polymer nanocomposites with tailored properties. Here, we present a facile strategy to integrate polystyrene-grafted carbon nanotubes (PSgCNT) (0.05-0.3 wt %) and poly(styrene-b-[isoprene-ran-epoxyisoprene]-b-styrene) block copolymer (10 wt %) into epoxy coatings using an ultrasound-assisted noncovalent functionalization process. The method leads to cured nanocomposites with core-shell block copolymer (BCP) nanodomains which are associated with carbon nanotubes (CNT) giving rise to CNT-BCP hybrid structures. Nanocomposite energy dissipation and reduced Young's Modulus (E*) is determined from force-distance curves by atomic force microscopy operating in the PeakForce QNM imaging mode and compared to thermosets modified with BCP and purified carbon nanotubes (pCNT). Remarkably, nanocomposites bearing PSgCNT-BCP conjugates display an increase in energy dissipation of up to 7.1-fold with respect to neat epoxy and 53% more than materials prepared with pCNT and BCP at the same CNT load (0.3 wt %), while reduced Young's Modulus shows no significant change with CNT type and increases up to 25% compared to neat epoxy E* at a CNT load of 0.3 wt %. The energy dissipation performance of nanocomposites is also reflected by the lower wear coefficients of materials with PSgCNT and BCP compared to those with pCNT and BCP, as determined by abrasion tests. Furthermore, scanning electron microscopy (SEM) images taken on wear surfaces show that materials incorporating PSgCNT and BCP exhibit much more surface deformation under shear forces in agreement with their higher ability to dissipate more energy before particle release. We propose that the synergistic effect observed in energy dissipation arises from hierarchical assembly of PSgCNT and BCP within the epoxy matrix and provides clues that the CNT-BCP interface has a significant role in the mechanisms of energy dissipation of epoxy coating modified by CNT-BCP conjugates. These findings provide a means to design epoxy-based coatings with high-energy dissipation performance.
Collapse
Affiliation(s)
- Hernan Garate
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN-UBA, §Centro de Microscopías Avanzadas, FCEyN-UBA, ⊥LP&MC, and ‡IFIBA-CONICET, Departamento de Física, FCEyN-UBA, Ciudad Universitaria , 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Bianchi
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN-UBA, §Centro de Microscopías Avanzadas, FCEyN-UBA, ⊥LP&MC, and ‡IFIBA-CONICET, Departamento de Física, FCEyN-UBA, Ciudad Universitaria , 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lía I Pietrasanta
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN-UBA, §Centro de Microscopías Avanzadas, FCEyN-UBA, ⊥LP&MC, and ‡IFIBA-CONICET, Departamento de Física, FCEyN-UBA, Ciudad Universitaria , 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Goyanes
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN-UBA, §Centro de Microscopías Avanzadas, FCEyN-UBA, ⊥LP&MC, and ‡IFIBA-CONICET, Departamento de Física, FCEyN-UBA, Ciudad Universitaria , 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Norma B D'Accorso
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN-UBA, §Centro de Microscopías Avanzadas, FCEyN-UBA, ⊥LP&MC, and ‡IFIBA-CONICET, Departamento de Física, FCEyN-UBA, Ciudad Universitaria , 1428, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
9
|
Lotti N, Munari A, Gigli M, Gazzano M, Tsanaktsis V, Bikiaris DN, Papageorgiou GZ. Thermal and structural response of in situ prepared biobased poly(ethylene 2,5-furan dicarboxylate) nanocomposites. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|