1
|
Crivillé-Tena L, Colomer-Farrarons J, Miribel-Català PL. Fully Autonomous Active Self-Powered Point-of-Care Devices: The Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2023; 23:9453. [PMID: 38067826 PMCID: PMC10708618 DOI: 10.3390/s23239453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Quick and effective point-of-care (POC) devices have the chance to revolutionize healthcare in developed and developing countries since they can operate anywhere the patient is, with the possibility of obtaining and sending the results to the doctor without delay. In recent years, significant efforts have focused on developing new POC systems that can screen for biomarkers continuously and non-invasively in body fluids to prevent, diagnose, and manage diseases. However, one of the critical challenges left to address is how to power them effectively and sufficiently. In developing countries and rural and remote areas, where there are usually no well-established electricity grids or nearby medical facilities, and using batteries is unreliable or not cost-effective, alternative power sources are the most challenging issue for stand-alone and self-sustained POC devices. Here, we provide an overview of the techniques for used self-powering POC devices, where the sample is used to detect and simultaneously generate energy to power the system. Likewise, this paper introduced the state-of-the-art with a review of different research projects, patents, and commercial products for self-powered POCs from the mid-2010s until present day.
Collapse
Affiliation(s)
| | - Jordi Colomer-Farrarons
- Discrete-to-Integrated Systems Laboratory (D2In), Electronics and Biomedical Engineering Department, Universitat de Barcelona (UB), Marti i Franques, 1-11, 08028 Barcelona, Spain;
| | - Pere Ll. Miribel-Català
- Discrete-to-Integrated Systems Laboratory (D2In), Electronics and Biomedical Engineering Department, Universitat de Barcelona (UB), Marti i Franques, 1-11, 08028 Barcelona, Spain;
| |
Collapse
|
2
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
3
|
Yeon SY, Seo M, Kim Y, Hong H, Chung TD. Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosens Bioelectron 2022; 203:114002. [DOI: 10.1016/j.bios.2022.114002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/26/2023]
|
4
|
Gao X, Jiang T, Qin W. Potentiometric aptasensing of Escherichia coli based on electrogenerated chemiluminescence as a highly sensitive readout. Biosens Bioelectron 2022; 200:113923. [PMID: 34986439 DOI: 10.1016/j.bios.2021.113923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/02/2022]
Abstract
We introduce here a versatile approach to read out potentiometric aptasensors by electrogenerated chemiluminescence (ECL), which can amplify the small potential changes induced by the bacterial concentrations via ECL signals. In the present system, the electrode modified with single-walled carbon nanotubes (SWCNTs) and aptamer molecules acts as the reference electrode and is placed in the sample solution for sensing the bacterial concentration changes, while the Ru(bpy)32+ modified gold electrode serves as the working electrode for generating ECL signals and is placed in the detection solution containing tripropylamine (TPA) spatially separated from the sample solution by a salt bridge. Ru(bpy)32+ is immobilized on the gold electrode's surface for enhancement of luminous efficiency and reduction of reagent consumption. A moving-part-free fluid flowing system is introduced to promote the mass transport of TPA from the detection solution to the surface of the ECL generating electrode. When a constant potential is imposed between the working and reference electrodes, the potential changes at the SWCNTs-aptamer modified electrode induced by the bacterial concentrations can modulate the potentials at the Ru(bpy)32+ modified electrode, thus generating the ECL signals. The developed sensing strategy shows a highly sensitive response to E. coli O157: H7 in the linear range of 5-1000 CFU mL-1 with a low detection limit of 2 CFU mL-1. We believe that the proposed approach is promising to develop aptasensors for sensitive detection of bacterial cells.
Collapse
Affiliation(s)
- Xueqing Gao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tianjia Jiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
5
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Sun X, Zhang H, Huang L, Hao S, Zhai J, Dong S. A naked-eye readout self-powered electrochemical biosensor toward indoor formaldehyde: On-site detection and exposure risk warning. Biosens Bioelectron 2021; 177:112975. [DOI: 10.1016/j.bios.2021.112975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
|
7
|
Santiago-Malagón S, Río-Colín D, Azizkhani H, Aller-Pellitero M, Guirado G, Del Campo FJ. A self-powered skin-patch electrochromic biosensor. Biosens Bioelectron 2021; 175:112879. [PMID: 33309218 DOI: 10.1016/j.bios.2020.112879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/12/2023]
Abstract
One of the limitations of many skin-patch wearable sensors today is their dependence on silicon-based electronics, increasing their complexity and unit cost. Self-powered sensors, in combination with electrochromic materials, allow simplifying the construction of these devices, leading to powerful analytical tools that remove the need for external detection systems. This work describes the construction, by screen-printing, of a self-powered electrochromic device that can be adapted for the determination of metabolites in sweat by the naked eye in the form of a 3 × 15 mm colour bar. The device comprises a lactate oxidase and osmium-polymer -based anode connected to a coplanar 3 × 15 mm Prussian Blue, PB, cathode printed over a transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, PEDOT:PSS electrode. An ion-gel composed of Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-co-HFP, a gelling agent, and ionic liquid 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate, EMIM-Tf, effectively separates the cathode display from the biosensing anode, protecting it from the sample. Despite its cathodic electrochromism, the PEDOT:PSS has a transmission above 90% and does not mask the Prussian Blue colour change because the cathode does not operate below 0 V vs Ag/AgCl at any time. The sensor displays lactate concentrations in the range of 0-10 mM over the length of the electrochromic display, which has a contrast ratio of 1.43. Although full response takes up to 24 min, 85% of the colour change is displayed within 10 min.
Collapse
Affiliation(s)
| | - Diego Río-Colín
- Universidad Del País Vasco, UPV-EHU, Campus de Leioa, Vizcaya, Spain
| | | | - Miguel Aller-Pellitero
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus de la Universitat Autónoma de Barcelona, Esfera UAB, 08193, Bellaterra, Barcelona, Spain; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - F Javier Del Campo
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus de la Universitat Autónoma de Barcelona, Esfera UAB, 08193, Bellaterra, Barcelona, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.
| |
Collapse
|
8
|
Jansod S, Cherubini T, Soda Y, Bakker E. Optical Sensing with a Potentiometric Sensing Array by Prussian Blue Film Integrated Closed Bipolar Electrodes. Anal Chem 2020; 92:9138-9145. [PMID: 32484335 DOI: 10.1021/acs.analchem.0c01421] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The simultaneous optical readout of a potentiometric sensor array of ion-selective electrodes (ISEs) based on PVC membranes is described here for the first time. The optical array consists of electrochromic Prussian Blue (PB) films in multiple closed ion-selective bipolar electrodes (BPEs), which gives a physical separation between the optical detection and sample compartments. The potential-dependent turnover of PB generates Prussian White (PW). A near-Nernstian response of the PB film is confirmed by colorimetric absorbance experiments as a function of applied potential. In the combined bipolar electrode cell, the overall potential is kept constant with a single potentiostat over the entire array where each PB spot indicates the potential change of an individual connected potentiometric probe. For cation-selective electrodes, the absorbance or blue intensity of the connected PB film is enhanced with increasing target cation activity. The colorimetric absorbance changes are simultaneously followed by a digital camera and analyzed by Mathematica software. A multiple cation-BPE array allows one to achieve simultaneous quantitative analysis of potassium, sodium, and calcium ions, demonstrated here in highly colored fruit juices. Mass transport at the PB thin film is shown not to be rate-limiting. The measuring ranges can be tuned in a wide range by potential control. The PB film exhibits greatly improved reproducibility and stability as compared to previous work with a ferroin redox probe confined in a thin solution layer.
Collapse
Affiliation(s)
- Sutida Jansod
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, Geneva 1211, Switzerland
| | - Thomas Cherubini
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, Geneva 1211, Switzerland
| | - Yoshiki Soda
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, Geneva 1211, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, Geneva 1211, Switzerland
| |
Collapse
|
9
|
Wang R, Du X, Ma X, Zhai J, Xie X. Ionophore-based pH independent detection of ions utilizing aggregation-induced effects. Analyst 2020; 145:3846-3850. [PMID: 32293619 DOI: 10.1039/d0an00486c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ionophores have been integrated into various electrochemical and optical sensing platforms for the selective detection of ions. Previous ionophore-based optical sensors rely on a H+ chromoionophore as the signal transducer and consequently, suffered from a pH cross-response. pH independent methods were proposed very recently by utilizing the solvatochromic dyes or the exhaustive mode. Here, we report a pH independent sensing principle based on nanospheres containing ionophores. As the ion-exchange occurs, the signal transducer undergoes aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ), leading to a dramatic change in fluorescence intensity. The principle was evaluated on different ionophores including those selective for K+, Na+, Ca2+, and Pb2+. The nanospheres were also introduced into microfluidic chips and successfully applied for the determination of sodium and potassium ion concentrations in diluted blood serum and urine samples.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Chemistry, Southern University of Science and Technology, 1088 Xili Xueyuan Blvd., Nanshan District, Shenzhen, 518055, China.
| | | | | | | | | |
Collapse
|
10
|
Mondal A, Hazra A, Chakrabarty J, Bose K JC, Banerjee P. Tandem Detection of Sub-Nano Molar Level CN - and Hg 2+ in Aqueous Medium by a Suitable Molecular Sensor: A Viable Solution for Detection of CN - and Development of the RGB-Based Sensory Device. ACS OMEGA 2020; 5:6576-6587. [PMID: 32258893 PMCID: PMC7114731 DOI: 10.1021/acsomega.9b04311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 05/04/2023]
Abstract
An inimitable urea-based multichannel chemosensor, DTPH [1,5-bis-(2,6-dichloro-4-(trifluoromethyl)phenyl)carbonohydrazide], was examined to be highly proficient to recognize CN- based on the H-bonding interaction between sensor -NH moiety and CN- in aqueous medium with explicit selectivity. In the absorption spectral titration of DTPH, a new peak at higher wavelength was emerged in titrimetric analytical studies of CN- with the zero-order reaction kinetics affirming the substantial sensor-analyte interaction. The isothermal titration calorimetry (ITC) experiment further affirmed that the sensing process was highly spontaneous with the Gibbs free energy of -26 × 104 cal/mol. The binding approach between DTPH and CN- was also validated by more than a few experimental studies by means of several spectroscopic tools along with the theoretical calculations. A very low detection limit of the chemosensor toward CN- (0.15 ppm) further instigated to design an RGB-based sensory device based on the colorimetric upshots of the chemosensor in order to develop a distinct perception regarding the presence of innocuous or precarious level of the CN- in a contaminated solution. Moreover, the reversibility of the sensor in the presence of CN- and Hg2+ originated a logic gate mimic ensemble. Additionally, the real-field along with the in vitro CN- detection efficiency of the photostable DTPH was also accomplished by using various biological specimens.
Collapse
Affiliation(s)
- Amita Mondal
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Department
of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, West
Bengal, India
| | - Abhijit Hazra
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Jitamanyu Chakrabarty
- Department
of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, West
Bengal, India
| | - Jagadeesh C. Bose K
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Priyabrata Banerjee
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| |
Collapse
|
11
|
Khoshbin Z, Housaindokht MR, Verdian A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal Biochem 2020; 597:113689. [PMID: 32199832 DOI: 10.1016/j.ab.2020.113689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 01/30/2023]
Abstract
Mercury (Hg2+) and silver (Ag+) ions possess the harmful effects on public health and environment that makes it essential to develop the sensing techniques with great sensitivity for the ions. Metal ions commonly coexist in the different biological and environmental systems. Hence, it is an urgent demand to design a simple method for the simultaneous detection of metal ions, peculiarly in the case of coexisting Hg2+ and Ag+. This study introduces a low-cost paper-based aptasensor to monitor Hg2+ and Ag+, simultaneously. The strategy of the sensing array is according to the conformational changes of Hg2+- and Ag+-specific aptamers and their release from the GO surface after the injection of the target sample on the sensing platform. Through monitoring the fluorescence recovery changes against the concentrations of the ions, Hg2+ and Ag+ can be determined as low as 1.33 and 1.01 pM. The paper-based aptasensor can simultaneously detect the ions within about 10 min. The aptasensor is applied prosperously to monitor Hg2+ and Ag+ in human serum, water, and milk. The designed aptasensor with the main advantages of simplicity and feasibility holds the supreme potential to develop a cost-effective sensing method for environmental monitoring, food control, and human diagnostics.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
12
|
Chemometric challenges in development of paper-based analytical devices: Optimization and image processing. Anal Chim Acta 2020; 1101:1-8. [PMID: 32029100 DOI: 10.1016/j.aca.2019.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Although microfluidic paper-based analytical devices (μPADs) get a lot of attention in the scientific literature, they rarely reach the level of commercialization. One possible reason for this is a lack of application of machine learning techniques supporting the design, optimization and fabrication of such devices. This work demonstrates the potential of two chemometric techniques including design of experiments (DoE) and digital image processing to support the production of μPADs. On the example of a simple colorimetric assay for isoniazid relying on the protonation equilibrium of methyl orange, the experimental conditions were optimized using a D-optimal design (DO) and the impact of multiple factors on the μPAD response was investigated. In addition, this work demonstrates the impact of automatic image processing on accelerating color value analysis and on minimizing errors caused by manual detection area selection. The employed algorithm is based on morphological recognition and allows the analysis of RGB (red, green, and blue) values in a repeatable way. In our belief, DoE and digital image processing methodologies are keys to overcome some of the remaining weaknesses in μPAD development to facilitate their future market entry.
Collapse
|
13
|
Hao S, Sun X, Zhang H, Zhai J, Dong S. Recent development of biofuel cell based self-powered biosensors. J Mater Chem B 2020; 8:3393-3407. [DOI: 10.1039/c9tb02428j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BFC-based SPBs have been used as power sources for other devices and as sensors for detecting toxicity and BOM.
Collapse
Affiliation(s)
- Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
14
|
Wang R, Du X, Zhai J, Xie X. Distance and Color Change Based Hydrogel Sensor for Visual Quantitative Determination of Buffer Concentrations. ACS Sens 2019; 4:1017-1022. [PMID: 30895782 DOI: 10.1021/acssensors.9b00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present here an innovative platform for the determination of pH buffer capacity based on FITC-dextran loaded hydrogels. Optical signals from the pH-sensitive hydrogels were analyzed by simple parameters including distance and color change. The methodology was validated on five different buffer systems and exhibited wide linearity (0.1 to 100 mM), good batch-to-batch reproducibility, high versatility, and resistance to background ionic strength changes. Experimental results also fit well with a theoretical model based on numerical simulation. Preliminary application in carbonate alkalinity determination of seawater proved very successful. This hydrogel buffer concentration sensor is fundamentally different from conventional acid-base titrations, brings minimum perturbation to samples, and shows great potential in real applications.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
15
|
Gao W, Jeanneret S, Yuan D, Cherubini T, Wang L, Xie X, Bakker E. Electrogenerated Chemiluminescence for Chronopotentiometric Sensors. Anal Chem 2019; 91:4889-4895. [PMID: 30835441 DOI: 10.1021/acs.analchem.9b00787] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We introduce here a general strategy to read out chronopotentiometric sensors by electrogenerated chemiluminescence (ECL). The potentials generated in chronopotentiometry in a sample compartment are used to control the ECL in a separate detection compartment. A three-electrode cell is used to monitor the concentration changes of the analyte, while the luminol-H2O2 system is responsible for ECL. The principle was shown to be feasible by theoretical simulations, indicating that the sampled times at a chosen potential, rather than traditional transition times, similarly give linear behavior between concentration and the square root of sampled time. With the help of a voltage adapter, the experimental combination between chronopotentiometry and ECL was successfully implemented. As an initial proof of concept, the ferro/ferricyanide redox couple was investigated. The square root of time giving maximum light output changed linearly with ferrocyanide concentration in the range from 0.70 to 4.81 mM. The method was successfully applied to the visual detection of carbonate alkalinity from 0.06 to 0.62 mM using chronopotentiometry at an ionophore-based hydrogen ion-selective membrane electrode. The measurements of carbonate in real samples including river water and commercial mineral water were successfully demonstrated.
Collapse
Affiliation(s)
- Wenyue Gao
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland.,Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Stéphane Jeanneret
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| | - Dajing Yuan
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| | - Thomas Cherubini
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| | - Lu Wang
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| | - Xiaojiang Xie
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry , University of Geneva , Quai Ernest-Ansermet 30 , CH-1211 Geneva , Switzerland
| |
Collapse
|
16
|
Zhai J, Yang L, Du X, Xie X. Electrochemical-to-Optical Signal Transduction for Ion-Selective Electrodes with Light-Emitting Diodes. Anal Chem 2018; 90:12791-12795. [DOI: 10.1021/acs.analchem.8b03213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liyuan Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinfeng Du
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
17
|
Smith S, Korvink JG, Mager D, Land K. The potential of paper-based diagnostics to meet the ASSURED criteria. RSC Adv 2018; 8:34012-34034. [PMID: 35548839 PMCID: PMC9086909 DOI: 10.1039/c8ra06132g] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/12/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022] Open
Abstract
Paper-based diagnostics have already revolutionized point-of-care approaches for health and environmental applications, by providing low-cost, disposable tools that can be utilized in remote settings. These devices typically consist of microfluidic, chemical, and biological diagnostic components implemented on paper substrates, towards addressing the ASSURED (Affordable, Sensitive, Specific, User friendly, Rapid and Robust, Equipment free and Deliverable to end users) principles set out by the World Health Organization. Paper-based diagnostics primarily contribute to the affordable, equipment-free, and deliverable-to-end-user aspects. However, additional functionality must be integrated with paper-based diagnostic devices to achieve truly ASSURED solutions. Advances in printed electronics provide a fitting foundation for implementing augmented functionality, while maintaining the affordability and disposability of paper-based diagnostics. This paper reviews the printed functional building blocks that contribute towards achieving this goal, from individual printed electronic components to fully integrated solutions. Important modules for sensing, read-out of results, data processing and communication, and on-board power are explored, and solutions printed on flexible or paper-based substrates for integration with paper-based diagnostics are considered. Although many of the unit operations required to achieve the ASSURED criteria can be implemented using paper, basic system functionality is still lacking, and this requires a concerted effort in integration of the various components for truly ASSURED solutions to be realized. Beyond ASSURED, modern clinical practises and crisis readiness also require additional informational functionality, which a systems approach using paper-based solutions could ensure.
Collapse
Affiliation(s)
- Suzanne Smith
- Council for Scientific and Industrial Reasearch (CSIR) Pretoria South Africa +27 12 841 3101
| | - Jan G Korvink
- Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Dario Mager
- Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Kevin Land
- Council for Scientific and Industrial Reasearch (CSIR) Pretoria South Africa +27 12 841 3101
| |
Collapse
|
18
|
Mahmud MA, Blondeel EJM, Kaddoura M, MacDonald BD. Features in Microfluidic Paper-Based Devices Made by Laser Cutting: How Small Can They Be? MICROMACHINES 2018; 9:E220. [PMID: 30424153 PMCID: PMC6187457 DOI: 10.3390/mi9050220] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022]
Abstract
In this paper, we determine the smallest feature size that enables fluid flow in microfluidic paper-based analytical devices (µPADs) fabricated by laser cutting. The smallest feature sizes fabricated from five commercially available paper types: Whatman filter paper grade 50 (FP-50), Whatman 3MM Chr chromatography paper (3MM Chr), Whatman 1 Chr chromatography paper (1 Chr), Whatman regenerated cellulose membrane 55 (RC-55) and Amershan Protran 0.45 nitrocellulose membrane (NC), were 139 ± 8 µm, 130 ± 11 µm, 103 ± 12 µm, 45 ± 6 µm, and 24 ± 3 µm, respectively, as determined experimentally by successful fluid flow. We found that the fiber width of the paper correlates with the smallest feature size that has the capacity for fluid flow. We also investigated the flow speed of Allura red dye solution through small-scale channels fabricated from different paper types. We found that the flow speed is significantly slower through microscale features and confirmed the similar trends that were reported previously for millimeter-scale channels, namely that wider channels enable quicker flow speed.
Collapse
Affiliation(s)
- Md Almostasim Mahmud
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada.
| | - Eric J M Blondeel
- ExVivo Labs Inc., 3 Regina Street North, Suite A, Waterloo, ON N2J 2Z7, Canada.
| | - Moufeed Kaddoura
- ExVivo Labs Inc., 3 Regina Street North, Suite A, Waterloo, ON N2J 2Z7, Canada.
| | - Brendan D MacDonald
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada.
| |
Collapse
|
19
|
Barhoum A, Samyn P, Öhlund T, Dufresne A. Review of recent research on flexible multifunctional nanopapers. NANOSCALE 2017; 9:15181-15205. [PMID: 28990609 DOI: 10.1039/c7nr04656a] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Traditional paper and papermaking have struggled with a declining market during the last few decades. However, the incorporation of nanotechnology into papermaking has brought possibilities to develop low-cost, biocompatible and flexible products with sophisticated functionalities. The functionality of nanopapers emerges from the intrinsic properties of the nanofibrous network, the additional loading of specific nanomaterials (NMs), or the additional deposition and patterning of thin films of nanomaterials on the paper surface. A successful development of functional nanopapers requires understanding how the nanopaper matrix, nanofillers, nanocoating pigments, nanoprinting inks, processing additives and manufacturing processes all interact to provide the intended functionality. This review addresses the emerging area of functional nanopapers. This review discusses flexible and multifunctional nanopapers, NMs being used in nanopaper making, manufacturing techniques, and functional applications that provide new important possibilities to utilize papermaking technology. The interface where NM research meets traditional papermaking has important implications for food packaging, energy harvesting and energy storage, flexible electronics, low-cost devices for medical diagnostics, and numerous other areas.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Department of Materials and Chemistry (MACH), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | |
Collapse
|
20
|
Yamada K, Shibata H, Suzuki K, Citterio D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. LAB ON A CHIP 2017; 17:1206-1249. [PMID: 28251200 DOI: 10.1039/c6lc01577h] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have emerged as a promising diagnostic platform a decade ago. In contrast to highly active academic developments, their entry into real-life applications is still very limited. This discrepancy is attributed to the gap between research developments and their practical utility, particularly in the aspects of operational simplicity, long-term stability of devices, and associated equipment. On the basis of these backgrounds, this review attempts to: 1) identify the reasons for success of paper-based devices already in the market, 2) describe the current status and remaining issues of μPADs in terms of operational complexity, signal interpretation approaches, and storage stability, and 3) discuss the possibility of mass production based on established manufacturing technologies. Finally, the state-of-the-art in commercialisation of μPADs is discussed, and the "upgrades" required from a laboratory-based prototype to an end user device are demonstrated on a specific example.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Hiroyuki Shibata
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Koji Suzuki
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
21
|
Zhang L, DeArmond D, Alvarez NT, Malik R, Oslin N, McConnell C, Adusei PK, Hsieh YY, Shanov V. Flexible Micro-Supercapacitor Based on Graphene with 3D Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603114. [PMID: 28054423 DOI: 10.1002/smll.201603114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Flexible micro-supercapacitors (MSCs) are constructed by 3D graphene from chemical vapor deposition. Without using any binder or metal current collector, the as-prepared 3D graphene MSC exhibits good flexibility, excellent cyclic life, and high areal capacitance of 1.5 mF cm-2 at a scan rate of 10 V s-1 . The electrochemical performance is further improved by oxygen plasma functionalization.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
| | - Derek DeArmond
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Noe T Alvarez
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Rachit Malik
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
| | - Nicholas Oslin
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Colin McConnell
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Paa Kwasi Adusei
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
| | - Yu-Yun Hsieh
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
| | - Vesselin Shanov
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, 45221-0072, USA
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| |
Collapse
|
22
|
Chow E, Liana DD, Raguse B, Gooding JJ. A Potentiometric Sensor for pH Monitoring with an Integrated Electrochromic Readout on Paper. Aust J Chem 2017. [DOI: 10.1071/ch17191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paper-based potentiometric pH sensors allow multiple measurements to be recorded in a cost-effective manner but usually in combination with an external display unit. In this work, a potentiometric pH sensor is integrated with an electrochromic readout system all on paper. The potentiometric pH sensor is based on electropolymerised aniline on a conductive gold nanoparticle film working electrode. The voltage output of the sensor is amplified using an operational amplifier and generated across an electrochromic readout system. The readout system comprises four segments of electrochromic Prussian blue/polyaniline on conductive gold nanoparticle films connected by graphite resistive separators. The colour of each segment is dependent on the voltage output from the potentiometric sensor and can be used to determine the pH range of a sample or whether the sample pH falls outside a critical value. This type of integrated paper device can be used for multiple measurements and also be applied to the development of other types of potentiometric sensors.
Collapse
|
23
|
Pellitero MA, Guimerà A, Kitsara M, Villa R, Rubio C, Lakard B, Doche ML, Hihn JY, Javier Del Campo F. Quantitative self-powered electrochromic biosensors. Chem Sci 2016; 8:1995-2002. [PMID: 28451316 PMCID: PMC5398271 DOI: 10.1039/c6sc04469g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/17/2016] [Indexed: 11/21/2022] Open
Abstract
Self-powered sensors are analytical devices able to generate their own energy, either from the sample itself or from their surroundings. The conventional approaches rely heavily on silicon-based electronics, which results in increased complexity and cost, and prevents the broader use of these smart systems. Here we show that electrochromic materials can overcome the existing limitations by simplifying device construction and avoiding the need for silicon-based electronics entirely. Electrochromic displays can be built into compact self-powered electrochemical sensors that give quantitative information readable by the naked eye, simply controlling the current path inside them through a combination of specially arranged materials. The concept is validated by a glucose biosensor coupled horizontally to a Prussian blue display designed as a distance-meter proportional to (glucose) concentration. This approach represents a breakthrough for self-powered sensors, and extends the application of electrochromic materials beyond smart windows and displays, into sensing and quantification.
Collapse
Affiliation(s)
- Miguel Aller Pellitero
- Instituto de Microelectrónica de Barcelona , IMB-CNM (CSIC) , Campus de la Universidad Autónoma , Esfera UAB , 08193-Bellaterra , Barcelona , Spain . ; Tel: +34 935947700
| | - Anton Guimerà
- Instituto de Microelectrónica de Barcelona , IMB-CNM (CSIC) , Campus de la Universidad Autónoma , Esfera UAB , 08193-Bellaterra , Barcelona , Spain . ; Tel: +34 935947700.,CIBER-BBN , Networking Centre on Bioengineering , Biomaterials and Nanomedicine , Barcelona , Spain
| | - Maria Kitsara
- Instituto de Microelectrónica de Barcelona , IMB-CNM (CSIC) , Campus de la Universidad Autónoma , Esfera UAB , 08193-Bellaterra , Barcelona , Spain . ; Tel: +34 935947700
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona , IMB-CNM (CSIC) , Campus de la Universidad Autónoma , Esfera UAB , 08193-Bellaterra , Barcelona , Spain . ; Tel: +34 935947700.,CIBER-BBN , Networking Centre on Bioengineering , Biomaterials and Nanomedicine , Barcelona , Spain
| | - Camille Rubio
- Institut UTINAM , UMR 6214 CNRS/Université de Franche-Comté , 16 route de Gray , 25030 Besançon , France
| | - Boris Lakard
- Institut UTINAM , UMR 6214 CNRS/Université de Franche-Comté , 16 route de Gray , 25030 Besançon , France
| | - Marie-Laure Doche
- Institut UTINAM , UMR 6214 CNRS/Université de Franche-Comté , 16 route de Gray , 25030 Besançon , France
| | - Jean-Yves Hihn
- Institut UTINAM , UMR 6214 CNRS/Université de Franche-Comté , 16 route de Gray , 25030 Besançon , France
| | - F Javier Del Campo
- Instituto de Microelectrónica de Barcelona , IMB-CNM (CSIC) , Campus de la Universidad Autónoma , Esfera UAB , 08193-Bellaterra , Barcelona , Spain . ; Tel: +34 935947700
| |
Collapse
|
24
|
Park DH, Park BJ, Kim JM. Creation of functional polydiacetylene images on paper using inkjet printing technology. Macromol Res 2016. [DOI: 10.1007/s13233-016-4129-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Wang Q, Li W, Qian D, Li Y, Bao N, Gu H, Yu C. Paper–based analytical device for detection of extracellular hydrogen peroxide and its application to evaluate drug–induced apoptosis. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Li T, Zhao C, Ma D, Du F, Wang J. Electrodeposition of Prussian blue films on Ni3Si2O5(OH)4 hollow nanospheres and their enhanced electrochromic properties. RSC Adv 2016. [DOI: 10.1039/c6ra00967k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Porous PB films were electrodeposited on Ni3Si2O5(OH)4 hollow nanospheres, resulting in enhanced electrochromic properties due to the coarse substrate.
Collapse
Affiliation(s)
- Tailiang Li
- School of Environmental and Materials Engineering
- College of Engineering
- Shanghai Second Polytechnic University
- Shanghai 201209
- China
| | - Congcong Zhao
- School of Environmental and Materials Engineering
- College of Engineering
- Shanghai Second Polytechnic University
- Shanghai 201209
- China
| | - Dongyun Ma
- School of Environmental and Materials Engineering
- College of Engineering
- Shanghai Second Polytechnic University
- Shanghai 201209
- China
| | - Fanglin Du
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Jinmin Wang
- School of Environmental and Materials Engineering
- College of Engineering
- Shanghai Second Polytechnic University
- Shanghai 201209
- China
| |
Collapse
|