1
|
París Ogáyar M, Ayed Z, Josserand V, Henry M, Artiga Á, Didonè L, Granado M, Serrano A, Espinosa A, Le Guével X, Jaque D. Luminescence Fingerprint of Intracellular NIR-II Gold Nanocluster Transformation: Implications for Sensing and Imaging. ACS NANO 2025; 19:7821-7834. [PMID: 39989214 DOI: 10.1021/acsnano.4c13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gold nanoclusters emitting in the second biological window (NIR-II-AuNCs) have gained significant interest for their potential in deep-tissue bioimaging and biosensing applications due to the partial transparency and reduced autofluorescence of tissues in this spectral range. However, the limited understanding of how the biological environment affects their luminescent properties might hinder their use in bioimaging and biosensing. In this study, we investigated the emission properties of NIR-II-AuNCs when interacting and internalizing into live cells including macrophages, fibroblasts, and cancer cell lines, revealing substantial alterations in their luminescence. A systematic comparison between control and in vitro experiments concluded that the disruption of surface ligands is the main factor responsible for these alterations. NIR-II-AuNCs within cellular environments may also be influenced by other interactions, including aggregation or complexation with proteins. Furthermore, we also corroborated these spectroscopic modifications at the in vivo level, providing additional evidence of the environmental sensitivity of NIR-II-AuNCs. The results obtained in this study contribute to a deeper understanding of the luminescence mechanisms of NIR-II-AuNCs in biological environments in cells and in living tissues and are crucial for their optimization as reliable tools in biological environment for in vitro and in vivo imaging and diagnostics.
Collapse
Affiliation(s)
- Marina París Ogáyar
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Zeineb Ayed
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Veronique Josserand
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Maxime Henry
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Álvaro Artiga
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Livia Didonè
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Medicina, Departamento de Fisiología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Miriam Granado
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Medicina, Departamento de Fisiología, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Aida Serrano
- Instituto de Cerámica y Vidrio | CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid | CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Xavier Le Guével
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, F-38000 Grenoble, France
| | - Daniel Jaque
- Nanomaterials for BioImaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28034 Madrid, Spain
| |
Collapse
|
2
|
Mohseni N, Moodi M, Kefayat A, Shokati F, Molaabasi F. Challenges and Opportunities of Using Fluorescent Metal Nanocluster-Based Colorimetric Assays in Medicine. ACS OMEGA 2024; 9:3143-3163. [PMID: 38284078 PMCID: PMC10809695 DOI: 10.1021/acsomega.3c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Development of rapid colorimetric methods based on novel optical-active metal nanomaterials has provided methods for the detection of ions, biomarkers, cancers, etc. Fluorescent metal nanoclusters (FMNCs) have gained a lot of attention due to their unique physical, chemical, and optical properties providing numerous applications from rapid and sensitive detection to cellular imaging. However, because of very small color changes, their colorimetric applications for developing rapid tests based on the naked eye or simple UV-vis absorption spectrophotometry are still limited. FMNCs with peroxidase-like activity have significant potential in a wide variety of applications, especially for point-of-care diagnostics. In this review, the effect of using various capping agents and metals for the preparation of nanoclusters in their colorimetric sensing properties is explored, and the synthesis and detection mechanisms and the recent advances in their application for ultrasensitive chemical and biological analysis regarding human health are highlighted. Finally, the challenges that remain as well as the future perspectives are briefly discussed. Overcoming these limitations will allow us to expand the nanocluster's application for colorimetric diagnostic purposes in medical practice.
Collapse
Affiliation(s)
- Nasim Mohseni
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Moodi
- Department
of Materials Science and Engineering, Ferdowsi
University of Mashhad, Mashhad, Iran
| | - Amirhosein Kefayat
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
- Department
of Oncology, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Farhad Shokati
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. J Am Chem Soc 2023. [PMID: 37200506 DOI: 10.1021/jacs.3c02880] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall coinage metal nanoclusters (NCs, <3 nm) have emerged as a novel class of theranostic probes due to their atomically precise size and engineered physicochemical properties. The rapid advances in the design and applications of metal NC-based theranostic probes are made possible by the atomic-level engineering of metal NCs. This Perspective article examines (i) how the functions of metal NCs are engineered for theranostic applications, (ii) how a metal NC-based theranostic probe is designed and how its physicochemical properties affect the theranostic performance, and (iii) how metal NCs are used to diagnose and treat various diseases. We first summarize the tailored properties of metal NCs for theranostic applications in terms of biocompatibility and tumor targeting. We focus our discussion on the theranostic applications of metal NCs in bioimaging-directed disease diagnosis, photoinduced disease therapy, nanomedicine, drug delivery, and optical urinalysis. Lastly, an outlook on the challenges and opportunities in the future development of metal NCs for theranostic applications is provided.
Collapse
Affiliation(s)
- Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, P. R. China
| | - Fanglin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
5
|
Cui J, Zhang C, Liu H, Yang L, Liu X, Zhang J, Zhou Y, Zhang J, Yan X. Pulmonary Delivery of Recombinant Human Bleomycin Hydrolase Using Mannose-Modified Hierarchically Porous UiO-66 for Preventing Bleomycin-Induced Pulmonary Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11520-11535. [PMID: 36808971 DOI: 10.1021/acsami.2c20479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bleomycins (BLMs) are widely used in clinics as antitumor agents. However, BLM-based chemotherapies often accompany severe pulmonary fibrosis (PF). Human bleomycin hydrolase is a cysteine protease that can convert BLMs into inactive deamido-BLMs. In this study, mannose-modified hierarchically porous UiO-66 (MHP-UiO-66) nanoparticles (NPs) were used to encapsulate the recombinant human bleomycin hydrolase (rhBLMH). When rhBLMH@MHP-UiO-66 was intratracheally instilled into the lungs, the NPs were transported into the epithelial cells, and rhBLMH prevented the lungs from PF during BLM-based chemotherapies. Encapsulation of rhBLMH in the MHP-UiO-66 NPs protects the enzyme from proteolysis in physiological conditions and enhances cellular uptake. In addition, the MHP-UiO-66 NPs significantly enhance the pulmonary accumulation of intratracheally instilled rhBLMH, thus providing more efficient protection of the lungs against BLMs during the chemotherapies.
Collapse
Affiliation(s)
- Jingxuan Cui
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengyu Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongliang Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lijun Yang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
6
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
7
|
Samoilova NA, Krayukhina MA, Vyshivannaya OV, Blagodatskikh IV. Investigation of the Binding of Lectins with Polymer Glycoconjugates and the Glycoconjugates Containing Silver Nanoparticles by Means of Optical Spectroscopy and Light Scattering. POLYMER SCIENCE. SERIES A, CHEMISTRY, PHYSICS 2022; 64:277-289. [PMID: 35669311 PMCID: PMC9149672 DOI: 10.1134/s0965545x22700092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
The synthesis of glycoconjugates, lectin-specific polymers containing a carbohydrate ligand (spacered residue of N-acetyl-D-glucosamine, β-N-Gly-GlcNAc) has been carried out. Glyconanoparticles (glycol-NPs) containing a label detectable by means of spectrophotometry, silver nanoparticles, have been prepared on the basis of the glycoconjugates. Copolymers of maleic anhydride with ethylene or N-vinylpyrrolidone have been used as a carrier to introduce the carbohydrate ligand and a stabilizer of silver nanoparticles. Solutions of the glycoconjugates and the silver glyconanoparticles have been characterized by means of light scattering, UV-visible spectroscopy, and TEM. The interaction of the obtained glycoconjugates and silver glyconanoparticles with N-acetyl-D-glucosamine-specific lectins of Solanum tuberosum agglutinin (STA) and wheat germ agglutinin (WGA) has been investigated by means of light scattering and UV-visible spectro-scopy. The data obtained via these physical methods using the carbohydrate-containing derivatives labeled with silver nanoparticles have been in agreement. It has been shown that the glycoconjugates and silver glyconanoparticles based on more hydrophilic copolymer of maleic acid with N-vinylpyrrolidone are more sensitive than the respective systems based on more hydrophobic copolymer of maleic acid with ethylene. It has been also shown that the considered systems are more sensitive to the STA lectin than to the WGA lectin. The silver glyconanoparticles have allowed more accurate and reliable detection of the lectins by means of light scattering, as compared to the glycopolymer.
Collapse
Affiliation(s)
- N. A. Samoilova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - M. A. Krayukhina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - O. V. Vyshivannaya
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - I. V. Blagodatskikh
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
8
|
Palomares F, Gomez F, de la Fuente MC, Perez-Sanchez N, Torres MJ, Mayorga C, Rojo J, Ramos-Soriano J. Fucodendropeptides induce changes in cells of the immune system in food allergic patients via DC-SIGN receptor. Carbohydr Res 2022; 517:108580. [DOI: 10.1016/j.carres.2022.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|
9
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy is the only recognized causal treatment for allergic disease that modulates the immune system toward a tolerogenic or desensitized state. Allergens or their derivative preparations are formulated with adjuvants of different origin and having diverse immunological functions, such as prolonged tissue release and specific immunomodulatory properties. In the last 2 decades, thanks to developments in the field of nanotechnology, more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. RECENT FINDINGS Nanomaterials possess unique and versatile properties which can be employed to develop drug carriers with safer profiles, better stability in physiological conditions and immunomodulatory properties. Nanoparticles can have an adjuvant effect per se or also when they are packed in structures whose physical-chemical properties can be handled in a way that also influences its release dynamics. In particular, it has been suggested that nanoparticle preparations can be put in complexes or loaded with allergens or allergenic extracts, opening the way to innovative paradigms. SUMMARY In this review, we analyze allergen/nanoparticle properties in terms of cytotoxicity, stability and immunogenic reaction in in-vitro and animal systems.
Collapse
|
10
|
Mayorga C, Perez‐Inestrosa E, Rojo J, Ferrer M, Montañez MI. Role of nanostructures in allergy: Diagnostics, treatments and safety. Allergy 2021; 76:3292-3306. [PMID: 33559903 DOI: 10.1111/all.14764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 01/08/2023]
Abstract
Nanotechnology is science, engineering and technology conducted at the nanoscale, which is about 1-100 nm. It has led to the development of nanomaterials, which behave very differently from materials with larger scales and can have a wide range of applications in biomedicine. The physical and chemical properties of materials of such small compounds depend mainly on the size, shape, composition and functionalization of the system. Nanoparticles, carbon nanotubes, liposomes, polymers, dendrimers and nanogels, among others, can be nanoengineeried for controlling all parameters, including their functionalization with ligands, which provide the desired interaction with the immunological system, that is dendritic cell receptors to activate and/or modulate the response, as well as specific IgE, or effector cell receptors. However, undesired issues related to toxicity and hypersensitivity responses can also happen and would need evaluation. There are wide panels of accessible structures, and controlling their physico-chemical properties would permit obtaining safer and more efficient compounds for clinical applications goals, either in diagnosis or treatment. The application of dendrimeric antigens, nanoallergens and nanoparticles in allergy diagnosis is very promising since it can improve sensitivity by increasing specific IgE binding, mimicking carrier proteins or enhancing signal detection. Additionally, in the case of immunotherapy, glycodendrimers, liposomes, polymers and nanoparticles have shown interest, behaving as platforms of allergenic structures, adjuvants or protectors of allergen from degradation or having a depot capacity. Taken together, the application of nanotechnology to allergy shows promising facts facing important goals related to the improvement of diagnosis as well as specific immunotherapy.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Málaga Spain
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - Ezequiel Perez‐Inestrosa
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Departamento de Química Orgánica, and the Biomimetic Dendrimers and Photonic Laboratory Instituto de Investigación Biomédica de Málaga‐IBIMAUniversidad de Málaga Málaga Spain
| | - Javier Rojo
- Glycosystems Laboratory Instituto de Investigaciones Químicas (IIQ)CSIC—Universidad de Sevilla Sevilla Spain
| | - Marta Ferrer
- Department of Allergy and Clinical Immunology Clínica Universidad de NavarraInstituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona Spain
| | - Maria Isabel Montañez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| |
Collapse
|
11
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
12
|
Pappalardo JS, Salmaso S, Levchenko TS, Mastrotto F, Bersani S, Langellotti CA, Vermeulen M, Ghersa F, Quattrocchi V, Zamorano PI, Hartner WC, Toniutti M, Musacchio T, Torchilin VP. Characterization of a Nanovaccine Platform Based on an α1,2-Mannobiose Derivative Shows Species-non-specific Targeting to Human, Bovine, Mouse, and Teleost Fish Dendritic Cells. Mol Pharm 2021; 18:2540-2555. [PMID: 34106726 DOI: 10.1021/acs.molpharmaceut.1c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dendritic cells serve as the main immune cells that trigger the immune response. We developed a simple and cost-effective nanovaccine platform based on the α1',2-mannobiose derivative for dendritic cell targeting. In previous work, we have formulated the α1,2-mannobiose-based nanovaccine platform with plasmid DNA and tested it in cattle against BoHV-1 infection. There, we have shown that the dendritic cell targeting using this nanovaccine platform in vivo can boost the immunogenicity, resulting in a long-lasting immunity. In this work, we aim to characterize the α1',2-mannobiose derivative, which is key in the nanovaccine platform. This DC-targeting strategy takes advantage of the specific receptor known as DC-SIGN and exploits its capacity to bind α1,2-mannobiose that is present at terminal ends of oligosaccharides in certain viruses, bacteria, and other pathogens. The oxidative conjugation of α1',2-mannobiose to NH2-PEG2kDa-DSPE allowed us to preserve the chemical structure of the non-reducing mannose of the disaccharide and the OH groups and the stereochemistry of all carbons of the reducing mannose involved in the binding to DC-SIGN. Here, we show specific targeting to DC-SIGN of decorated micelles incubated with the Raji/DC-SIGN cell line and uptake of targeted liposomes that took place in human, bovine, mouse, and teleost fish DCs in vitro, by flow cytometry. Specific targeting was found in all cultures, demonstrating a species-non-specific avidity for this ligand, which opens up the possibility of using this nanoplatform to develop new vaccines for various species, including humans.
Collapse
Affiliation(s)
- Juan Sebastian Pappalardo
- Veterinary Nanomedicine Group, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria, Bote Modesta Victoria 4450, San Carlos de Bariloche, Río Negro R8403DVZ, Argentina.,Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Tatyana S Levchenko
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Sara Bersani
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Cecilia A Langellotti
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina
| | - Monica Vermeulen
- National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina.,Institute of Experimental Medicine (IMEX, ANM-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad de Buenos Aires C1425AUM, Argentina
| | - Federica Ghersa
- Veterinary Nanomedicine Group, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria, Bote Modesta Victoria 4450, San Carlos de Bariloche, Río Negro R8403DVZ, Argentina.,Parasitology Laboratory, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNCo-CONICET) Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro R8400FRF, Argentina
| | - Valeria Quattrocchi
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina
| | - Patricia I Zamorano
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina
| | - William C Hartner
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Micaela Toniutti
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Tiziana Musacchio
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
13
|
Ramos-Soriano J, Rojo J. Glycodendritic structures as DC-SIGN binders to inhibit viral infections. Chem Commun (Camb) 2021; 57:5111-5126. [PMID: 33977972 DOI: 10.1039/d1cc01281a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DC-SIGN, a lectin discovered two decades ago, plays a relevant role in innate immunity. Since its discovery, it has turned out to be a target for developing antiviral drugs based on carbohydrates due to its participation in the infection process of several pathogens. A plethora of carbohydrate multivalent systems using different scaffolds have been described to achieve this goal. Our group has made significant contributions to this field, which are revised herein.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
14
|
Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021; 9:669969. [PMID: 34046397 PMCID: PMC8144316 DOI: 10.3389/fchem.2021.669969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.
Collapse
Affiliation(s)
- Dongyoon Kim
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nowras Rahhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
15
|
Lin Y, Li C, Liu A, Zhen X, Gao J, Wu W, Cai W, Jiang X. Responsive hyaluronic acid-gold cluster hybrid nanogel theranostic systems. Biomater Sci 2021; 9:1363-1373. [PMID: 33367388 PMCID: PMC7934158 DOI: 10.1039/d0bm01815e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tumor microenvironment responsive and self-monitored multimodal synergistic theranostic strategies can significantly improve therapeutic efficacy by overcoming biological barriers. Herein, we report a type of smart fluorescent hyaluronic acid nanogel that can respond to the reducing microenvironment and activate tumor targeting with light-traceable monitoring in cancer therapy. First, the derivative of hyaluronic acid (HA) with a vinyl group and cystamine bisacrylamide were used to synthesize bioreducible HA based nanogels via copolymerization in aqueous medium. Then, multifunctional mHA-gold cluster (mHA-GC) hybrid nanogels were successfully prepared by the in situ reduction of gold salt in the HA nanogels. The HA matrix turns the nanogels into a capsule for effective drug loading with excellent colloidal stability. Interestingly, the reducing tumor microenvironment dramatically enhanced the fluorescence signal of gold clusters in the hybrid nanogels. The highly selective cancer cell uptake and efficient intratumoral accumulation of the hybrid nanogels were demonstrated by fluorescence tracking of these nanogels. Responsive disassembly of the hybrid nanogels and drug release were triggered by excess glutathione presence in cancer cells. Moreover, in vivo and in vitro tumor suppression assays revealed that the doxorubicin-loaded hybrid nanogels exhibited significantly superior tumor cell inhibition abilities compared to free DOX. Overall, the mHA-GC hybrid nanogels emerge as a promising theranostic nanoplatform for the targeted delivery and controlled release of antitumor drugs with light-traceable monitoring in cancer treatment.
Collapse
Affiliation(s)
- Ying Lin
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Chen Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - An Liu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Jiangang Gao
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
16
|
Chakraborty S, Nandy A, Ghosh S, Das NK, Parveen S, Datta S, Mukherjee S. Protein-templated gold nanoclusters as specific bio-imaging probes for the detection of Hg(ii) ions in in vivo and in vitro systems: discriminating between MDA-MB-231 and MCF10A cells. Analyst 2021; 146:1455-1463. [DOI: 10.1039/d0an02108c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sub-nanomolar selective detection of Hg(ii) ions by protein (Human Serum Albumin, HSA) templated gold nanoclusters (AuNCs), both in in vitro as well as in vivo environments and specific endocytose behaviour towards breast cancer (BC) cell lines.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| | - Atanu Nandy
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| | - Subhadip Ghosh
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| | - Nirmal Kumar Das
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| | - Sameena Parveen
- Department of Biological Sciences
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| | - Sunando Datta
- Department of Biological Sciences
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| | - Saptarshi Mukherjee
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462 066
- India
| |
Collapse
|
17
|
Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. NANOSCALE ADVANCES 2020; 2:5046-5089. [PMID: 36132021 PMCID: PMC9418019 DOI: 10.1039/d0na00478b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/22/2020] [Indexed: 05/04/2023]
Abstract
Research efforts on nanomaterial-based therapies for the treatment of autoimmune diseases and cancer have spiked and have made rapid progress over the past years. Nanomedicine has been shown to contribute significantly to overcome current therapeutic limitations, exhibiting advantages compared to conventional therapeutics, such as sustained drug release, delayed drug degradation and site-specific drug delivery. Multiple nanodrugs have reached the clinic, but translation is often hampered by either low targeting efficiency or undesired side effects. Nanomaterials, and especially inorganic nanoparticles, have gained criticism due to their potential toxic effects, including immunological alterations. However, many strategies have been attempted to improve the therapeutic efficacy of nanoparticles and exploit their unique properties for the treatment of inflammation and associated diseases. In this review, we elaborate on the immunomodulatory effects of nanomaterials, with a strong focus on the underlying mechanisms that lead to these specific immune responses. Nanomaterials to be discussed include inorganic nanoparticles such as gold, silica and silver, as well as organic nanomaterials such as polymer-, dendrimer-, liposomal- and protein-based nanoparticles. Furthermore, various approaches for tuning nanomaterials in order to enhance their efficacy and attenuate their immune stimulation or suppression, with respect to the therapeutic application, are described. Additionally, we illustrate how the acquired insights have been used to design immunotherapeutic strategies for a variety of diseases. The potential of nanomedicine-based therapeutic strategies in immunotherapy is further illustrated by an up to date overview of current clinical trials. Finally, recent efforts into enhancing immunogenic cell death through the use of nanoparticles are discussed.
Collapse
Affiliation(s)
- Vincent Lenders
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Xanthippi Koutsoumpou
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Ara Sargsian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven B-3000 Leuven Belgium
| |
Collapse
|
18
|
Zohrabi T, Hosseinkhani S. Ternary Nanocomplexes of Metallic Nanoclusters and Recombinant Peptides for Fluorescence Imaging and Enhanced Gene Delivery. Mol Biotechnol 2020; 62:495-507. [PMID: 32808172 DOI: 10.1007/s12033-020-00260-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The efficient carrier design for transferring therapeutic genes into target cells as well as tracking the delivered agents has attracted lots of attention in the field of DNA-based therapeutics. Here, we demonstrate this concept by a fast and facilitated method using BSA gold nanocluster (BSA AuNcs) conjugated with chimeric peptide with ability of DNA binding/packaging, endosome disruption and cell nuclear localization. An extensive characterization of photoluminescence properties, electrophoresis mobility and size distribution of the nanocarrier demonstrating the stable complexes composed of plasmid DNA, chimeric peptide and BSA AuNcs were successfully formed through electrostatic interactions. In the hybrid complexes, chimeric peptide could effectively decrease the cytotoxicity of AuNcs as well as enhance internalization of plasmid harboring firefly luciferase gene into HEK 293 T. The designed nanocarrier could be a promising vector in gene delivery systems for improved theranostics applications.
Collapse
Affiliation(s)
- Tayebeh Zohrabi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
20
|
Darweesh RS, Ayoub NM, Nazzal S. Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int J Nanomedicine 2019; 14:7643-7663. [PMID: 31571869 PMCID: PMC6756918 DOI: 10.2147/ijn.s223941] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vessels. It is a highly regulated process as determined by the interplay between pro-angiogenic and anti-angiogenic factors. Under certain conditions the balance between angiogenesis stimulators and inhibitors is altered, which results in a shift from physiological to pathological angiogenesis. Therefore, the goal of therapeutic targeting of angiogenic process is to normalize vasculature in target tissues by enhancing angiogenesis in disease conditions of reduced vascularity and blood flow, such as tissue ischemia, or alternatively to inhibit excessive and abnormal angiogenesis in disorders like cancer. Gold nanoparticles (AuNPs) are special particles that are generated by nanotechnology and composed of an inorganic core containing gold which is encircled by an organic monolayer. The ability of AuNPs to alter vasculature has captured recent attention in medical literature as potential therapeutic agents for the management of pathologic angiogenesis. This review provides an overview of the effects of AuNPs on angiogenesis and the molecular mechanisms and biomedical applications associated with their effects. In addition, the main synthesis methods, physical properties, uptake mechanisms, and toxicity of AuNPs are briefly summarized.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid22110, Jordan
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX75235-6411, USA
| |
Collapse
|
21
|
Palomares F, Ramos‐Soriano J, Gomez F, Mascaraque A, Bogas G, Perkins JR, Gonzalez M, Torres MJ, Diaz‐Perales A, Rojo J, Mayorga C. Pru p 3‐Glycodendropeptides Based on Mannoses Promote Changes in the Immunological Properties of Dendritic and T‐Cells from LTP‐Allergic Patients. Mol Nutr Food Res 2019; 63:e1900553. [DOI: 10.1002/mnfr.201900553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/13/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Francisca Palomares
- Research LaboratoryIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - Javier Ramos‐Soriano
- Glycosystems LaboratoryInstitute for Chemical Research (IIQ)CSIC – University of Seville 41092 Seville Spain
| | - Francisca Gomez
- Allergy UnitIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - Ainhoa Mascaraque
- Glycosystems LaboratoryInstitute for Chemical Research (IIQ)CSIC – University of Seville 41092 Seville Spain
| | - Gador Bogas
- Allergy UnitIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - James Richard Perkins
- Research LaboratoryIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - Miguel Gonzalez
- Research LaboratoryIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - Maria Jose Torres
- Allergy UnitIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | | | - Javier Rojo
- Glycosystems LaboratoryInstitute for Chemical Research (IIQ)CSIC – University of Seville 41092 Seville Spain
| | - Cristobalina Mayorga
- Research LaboratoryIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
- Allergy UnitIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| |
Collapse
|
22
|
Meng J, E S, Wei X, Chen X, Wang J. Confinement of AuAg NCs in a Pomegranate-Type Silica Architecture for Improved Copper Ion Sensing and Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21150-21158. [PMID: 31117442 DOI: 10.1021/acsami.9b04047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metal nanoclusters (NCs) have been in focus received attention due to their superior optical properties, whereas their biomedical applications are limited by the relatively low quantum yield and poor cellular uptaking behaviors. In the present study, a pomegranate-type architecture with densely packed AuAg NCs is constructed, where the aminoterminated dendritic silica spheres (dNSiO2) with ultralarge central-radial pore channels act as an efficient absorbent host for self-assembling of AuAg NCs. The spatial confinement of AuAg NCs within the pomegranate-type silica architecture not only avoids the time-tedious purification procedure in metal NCs fabrication but also offer significant improvement of the photoluminescence performance of AuAg NCs, i.e., the quantum yield (17.0%) is nearly doubled when compared to that of free AuAg NCs. The presence of Cu2+ induces efficient quenching of the photoluminescence of obtained dNSiO2-AuAg NCs, achieving the sensitive detection of Cu2+ with a detection limit of 0.060 μM. Moreover, the pomegranate-type silica architecture serves itself as an excellent nanocarrier to deliver AuAg NCs into living cells, making dNSiO2-AuAg NCs an efficient probe for intracellular Cu2+ sensing and imaging.
Collapse
Affiliation(s)
- Jie Meng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Shuang E
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
23
|
Glycosylated nanostructures in sublingual immunotherapy induce long-lasting tolerance in LTP allergy mouse model. Sci Rep 2019; 9:4043. [PMID: 30858392 PMCID: PMC6411722 DOI: 10.1038/s41598-019-40114-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
An effective specific immunotherapy should contain elements to generate specific recognition (T-cell peptides) and to modulate the immunological response towards a Th1/Treg pattern by enhancing dendritic cells (DCs). We propose a novel sublingual immunotherapy for peach allergy, using systems, that combine Prup3-T-cell peptides with mannose dendrons (D1ManPrup3 and D4ManPrup3). Peach anaphylactic mice were treated 1, 2 and 5 nM concentrations. Tolerance was assessed one/five weeks after finishing treatment by determining in vivo/in vitro parameters after challenge with Prup3. Only mice receiving D1ManPrup3 at 2 nM were protected from anaphylaxis (no temperature changes, decrease in Prup3-sIgE and -sIgG1 antibody levels, and secreting cells) compared to PBS-treated mice. Moreover, an increase of Treg-cells and regulatory cytokines (IL-10+/IFN-γ+) in CD4+-T-cells and DCs were found. These changes were maintained at least five weeks after stopping treatment. D1ManPrup3 is an effective new approach of immunotherapy inducing protection from anaphylaxis which persists after finishing treatment.
Collapse
|
24
|
Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev 2019; 48:2422-2457. [PMID: 30838373 DOI: 10.1039/c8cs00800k] [Citation(s) in RCA: 589] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their atomically precise structures and intriguing chemical/physical properties, metal nanoclusters are an emerging class of modular nanomaterials. Photo-luminescence (PL) is one of their most fascinating properties, due to the plethora of promising PL-based applications, such as chemical sensing, bio-imaging, cell labeling, phototherapy, drug delivery, and so on. However, the PL of most current nanoclusters is still unsatisfactory-the PL quantum yield (QY) is relatively low (generally lower than 20%), the emission lifetimes are generally in the nanosecond range, and the emitted color is always red (emission wavelengths of above 630 nm). To address these shortcomings, several strategies have been adopted, and are reviewed herein: capped-ligand engineering, metallic kernel alloying, aggregation-induced emission, self-assembly of nanocluster building blocks into cluster-based networks, and adjustments on external environment factors. We further review promising applications of these fluorescent nanoclusters, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling. Finally, scope for improvements and future perspectives of these novel nanomaterials are highlighted as well. Our intended audience is the broader scientific community interested in the fluorescence of metal nanoclusters, and our review hopefully opens up new horizons for these scientists to manipulate PL properties of nanoclusters. This review is based on publications available up to December 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, China.
| | | |
Collapse
|
25
|
Le Guével X, Henry M, Motto-Ros V, Longo E, Montañez MI, Pelascini F, de La Rochefoucauld O, Zeitoun P, Coll JL, Josserand V, Sancey L. Elemental and optical imaging evaluation of zwitterionic gold nanoclusters in glioblastoma mouse models. NANOSCALE 2018; 10:18657-18664. [PMID: 30264838 DOI: 10.1039/c8nr05299a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report in this study the in vivo biodistribution of ultra-small luminescent gold (Au) particles (∼1.5 nm core size; 17 kDa), so-called nanoclusters (NCs), stabilized by bidentate zwitterionic molecules in subcutaneous (s.c.) and orthotopic glioblastoma mice models. Particular investigations on renal clearance and tumor uptake were performed using highly sensitive advanced imaging techniques such as multi-elemental Laser-Induced Breakdown Spectroscopy (LIBS) imaging and in-line X-ray Synchrotron Phase Contrast Tomography (XSPCT). Results show a blood circulation time of 6.5 ± 1.3 min accompanied by an efficient and fast renal clearance through the cortex of the kidney with a 66% drop between 1 h and 5 h. With a similar size range, these Au NCs are 5 times more fluorescent than the well-described Au25GSH18 NCs in the near-infrared (NIR) region and present significantly stronger tumor uptake and retention illustrated by an in vivo s.c. tumor-to-skin ratio of 1.8 measured by non-invasive optical imaging and an ex vivo tumor-to-muscle of 6.1. This work highlights the pivotal role of surface coating in designing optimum Au NC candidates for cancer treatment.
Collapse
Affiliation(s)
- Xavier Le Guével
- Cancer Targets & Experimental Therapeutics, Institute for Advanced Biosciences (IAB), University of Grenoble Alpes - INSERM U1209 - CNRS UMR 5309- 38000, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
27
|
Jia J, Zhang Y, Xin Y, Jiang C, Yan B, Zhai S. Interactions Between Nanoparticles and Dendritic Cells: From the Perspective of Cancer Immunotherapy. Front Oncol 2018; 8:404. [PMID: 30319969 PMCID: PMC6167641 DOI: 10.3389/fonc.2018.00404] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the primary antigen-presenting cells and play key roles in the orchestration of the innate and adaptive immune system. Targeting DCs by nanotechnology stands as a promising strategy for cancer immunotherapy. The physicochemical properties of nanoparticles (NPs) influence their interactions with DCs, thus altering the immune outcome of DCs by changing their functions in the processes of maturation, homing, antigen processing and antigen presentation. In this review, we summarize the recent progress in targeting DCs using NPs as a drug delivery carrier in cancer immunotherapy, the recognition of NPs by DCs, and the ways the physicochemical properties of NPs affect DCs' functions. Finally, the molecular pathways in DCs that are affected by NPs are also discussed.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Yan Xin
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China.,School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| |
Collapse
|
28
|
Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ. Theranostics based on AIEgens. Theranostics 2018; 8:4925-4956. [PMID: 30429878 PMCID: PMC6217064 DOI: 10.7150/thno.27787] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022] Open
Abstract
The utilization of luminogens with aggregation-induced emission (AIE) characteristics has recently been developed at a tremendous pace in the area of theranostics, mainly because AIE luminogens (AIEgens) hold various distinct advantages, such as good biocompatibility, excellent fluorescence properties, simple preparation and modification, perfect size of nano-aggregation for enhanced permeability and retention effect, promoted efficiencies of photodynamic and photothermal therapies, efficient photoacoustic imaging, and ready constructions of multimodal imaging and therapy. Significant breakthroughs and developments of theranostics based on AIEgens have been achieved in the past few years, and great progress has been witnessed in many theranostic modalities, indicating that AIEgens remarkably complement conventional theranostic materials and promote the development of theranostics. This review provides theoretical insights into the advantages of AIEgens in theranostics, and systematically summarizes the basic concepts, seminal studies, recent trends and perspectives in theranostics based on AIEgens. We believe that AIEgens would be promising multifunctional theranostic platforms in clinical fields and facilitate significant advancements in this research-active area.
Collapse
Affiliation(s)
- Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Michelle Mei Suet Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wenhan Xu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan Tsz Kin Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky Wing Yip Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering, and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
Yu X, Liu J, Li HW, Wu Y. A two-stage assembly with PEI induced emission enhancement of Au-AgNCs@AMP and the intrinsic mechanism. NANOSCALE 2018; 10:14563-14569. [PMID: 30024588 DOI: 10.1039/c8nr03720e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, aggregation-induced emission (AIE) properties have been revealed for some metal nanoclusters (NCs), providing a new approach to improve the quantum yields (QY). In the present study, a two-stage assembly was carried out between adenosine monophosphate capped bimetallic nanoclusters of gold and silver (Au-AgNCs@AMP) and polyethylenimine (PEI), in which the QY was improved from 8.64% to 25.02%, showing obvious assembly induced emission enhancement (AIEE) properties. The intrinsic mechanisms of the assembly and emission enhancement in two stages were studied in depth, which indicated that the electrostatic interaction between the phosphate group in AMP and the amino group in PEI restricted the intramolecular vibration and rotation of capping ligands, and reduced the non-radiative relaxation of the corresponding excited states in stage I; in stage II, the micellization of PEI at high concentration pushed the NCs into a less polar environment and greatly enhanced the metal-metal interaction between them, which facilitated the excited state relaxation dynamics via a radiative pathway. Therefore, the luminescence enhancement depended on the assembly process in two stages directly. The present study is beneficial to understand the AIEE mechanism and the design principles, which will expand the applications of metal NCs.
Collapse
Affiliation(s)
- Xu Yu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | | | | | | |
Collapse
|
30
|
Panzarini E, Mariano S, Carata E, Mura F, Rossi M, Dini L. Intracellular Transport of Silver and Gold Nanoparticles and Biological Responses: An Update. Int J Mol Sci 2018; 19:E1305. [PMID: 29702561 PMCID: PMC5983807 DOI: 10.3390/ijms19051305] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Medicine, food, and cosmetics represent the new promising applications for silver (Ag) and gold (Au) nanoparticles (NPs). AgNPs are most commonly used in food and cosmetics; conversely, the main applications of gold NPs (AuNPs) are in the medical field. Thus, in view of the risk of accidentally or non-intended uptake of NPs deriving from the use of cosmetics, drugs, and food, the study of NPs⁻cell interactions represents a key question that puzzles researchers in both the nanomedicine and nanotoxicology fields. The response of cells starts when the NPs bind to the cell surface or when they are internalized. The amount and modality of their uptake depend on many and diverse parameters, such as NPs and cell types. Here, we discuss the state of the art of the knowledge and the uncertainties regarding the biological consequences of AgNPs and AuNPs, focusing on NPs cell uptake, location, and translocation. Finally, a section will be dedicated to the most currently available methods for qualitative and quantitative analysis of intracellular transport of metal NPs.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Francesco Mura
- Department of Basic and Applied Science to Engineering, Sapienza University of Rome, 00161 Rome, Italy.
- Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, 00161 Rome, Italy.
| | - Marco Rossi
- Department of Basic and Applied Science to Engineering, Sapienza University of Rome, 00161 Rome, Italy.
- Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, 00161 Rome, Italy.
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
- CNR-Nanotec, Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
31
|
Tran TH, Tran TTP, Nguyen HT, Phung CD, Jeong JH, Stenzel MH, Jin SG, Yong CS, Truong DH, Kim JO. Nanoparticles for dendritic cell-based immunotherapy. Int J Pharm 2018; 542:253-265. [PMID: 29555438 DOI: 10.1016/j.ijpharm.2018.03.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Crosstalk among immune cells has attracted considerable attention with the advent of immunotherapy as a novel therapeutic approach for challenging diseases, especially cancer, which is the leading cause of mortality worldwide. Dendritic cells-the key antigen-presenting cells-play a pivotal role in immunological response by presenting exogenous epitopes to T cells, which induces the self-defense mechanisms of the body. Furthermore, nanotechnology has provided promising ways for diagnosing and treating cancer in the last decade. The progress in nanoparticle drug carrier development, combined with enhanced understanding of the immune system, has enabled harnessing of anti-tumor immunity. This review focuses on the recent advances in nanotechnology that have improved the therapeutic efficacy of immunotherapies, with emphasis on dendritic cell physiology and its role in presenting antigens and eliciting therapeutic T cell response.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Duy Hieu Truong
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
32
|
de Vries WC, Tesch M, Studer A, Ravoo BJ. Molecular Recognition and Immobilization of Ligand-Conjugated Redox-Responsive Polymer Nanocontainers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41760-41766. [PMID: 29140078 DOI: 10.1021/acsami.7b15516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present the preparation of ligand-conjugated redox-responsive polymer nanocontainers by the supramolecular decoration of cyclodextrin vesicles with a thin redox-cleavable polymer shell that displays molecular recognition units on its surface. Two widely different recognition motifs (mannose-Concanavalin A and biotin-streptavidin) are compared and the impact of ligand density on the nanocontainer surface as well as an additional functionalization with nonadhesive poly(ethylene glycol) is studied. Aggregation assays, dynamic light scattering, and a fluorometric quantification reveal that the molecular recognition of ligand-conjugated polymer nanocontainers by receptor proteins is strongly affected by the multivalency of interactions and the association strength of the recognition motif. Finally, microcontact printing is used to prepare streptavidin-patterned surfaces, and the specific immobilization of biotin-conjugated nanocontainers is demonstrated. As a prototype of a nanosensor, these tethered nanocontainers can sense a reductive environment and react by releasing a payload.
Collapse
Affiliation(s)
- Wilke C de Vries
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Matthias Tesch
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Armido Studer
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| |
Collapse
|
33
|
Wang WX, Wu Y, Li HW. Regulation on the aggregation-induced emission (AIE) of DNA-templated silver nanoclusters by BSA and its hydrolysates. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Compostella F, Pitirollo O, Silvestri A, Polito L. Glyco-gold nanoparticles: synthesis and applications. Beilstein J Org Chem 2017; 13:1008-1021. [PMID: 28684980 PMCID: PMC5480336 DOI: 10.3762/bjoc.13.100] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 01/15/2023] Open
Abstract
Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.
Collapse
Affiliation(s)
- Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milan, Italy
| | - Olimpia Pitirollo
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessandro Silvestri
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Laura Polito
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|
35
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
36
|
Cheng HJ, Kao CL, Chen YF, Huang PC, Hsu CY, Kuei CH. Fluorescent Gold Clusters as Logic Gates for the Detection of Different Metal Ions. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hung-Jen Cheng
- Department of Chemistry; National Cheng Kung University; Tainan City 701 Taiwan, Republic of China
- Department of Chemical and Materials Engineering; Cheng Shiu University; Kaohsiung City 833 Taiwan, Republic of China
| | - Chang-Long Kao
- Department of Chemistry; National Cheng Kung University; Tainan City 701 Taiwan, Republic of China
| | - Yan-Fu Chen
- Department of Chemistry; National Cheng Kung University; Tainan City 701 Taiwan, Republic of China
| | - Ping-Chih Huang
- Kaohsiung Branch Office, Bureau of Standards; Metrology and Inspection, Ministry of Economic Affairs; Kaohsiung City 802 Taiwan, Republic of China
| | - Ching-Yun Hsu
- Kaohsiung Branch Office, Bureau of Standards; Metrology and Inspection, Ministry of Economic Affairs; Kaohsiung City 802 Taiwan, Republic of China
| | - Chun-Hsiung Kuei
- Department of Chemistry; National Cheng Kung University; Tainan City 701 Taiwan, Republic of China
| |
Collapse
|
37
|
Khandelwal P, Poddar P. Fluorescent metal quantum clusters: an updated overview of the synthesis, properties, and biological applications. J Mater Chem B 2017; 5:9055-9084. [DOI: 10.1039/c7tb02320k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A brief history of metal quantum clusters, their synthesis methods, physical properties, and an updated overview of their applications is provided.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| | - Pankaj Poddar
- Physical & Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| |
Collapse
|
38
|
Oh E, Huston AL, Shabaev A, Efros A, Currie M, Susumu K, Bussmann K, Goswami R, Fatemi FK, Medintz IL. Energy Transfer Sensitization of Luminescent Gold Nanoclusters: More than Just the Classical Förster Mechanism. Sci Rep 2016; 6:35538. [PMID: 27774984 PMCID: PMC5075882 DOI: 10.1038/srep35538] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022] Open
Abstract
Luminescent gold nanocrystals (AuNCs) are a recently-developed material with potential optic, electronic and biological applications. They also demonstrate energy transfer (ET) acceptor/sensitization properties which have been ascribed to Förster resonance energy transfer (FRET) and, to a lesser extent, nanosurface energy transfer (NSET). Here, we investigate AuNC acceptor interactions with three structurally/functionally-distinct donor classes including organic dyes, metal chelates and semiconductor quantum dots (QDs). Donor quenching was observed for every donor-acceptor pair although AuNC sensitization was only observed from metal-chelates and QDs. FRET theory dramatically underestimated the observed energy transfer while NSET-based damping models provided better fits but could not reproduce the experimental data. We consider additional factors including AuNC magnetic dipoles, density of excited-states, dephasing time, and enhanced intersystem crossing that can also influence ET. Cumulatively, data suggests that AuNC sensitization is not by classical FRET or NSET and we provide a simplified distance-independent ET model to fit such experimental data.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Sotera Defense Solutions, Inc. Columbia, MD 21046, USA
| | - Alan L. Huston
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Andrew Shabaev
- Center for Computational Material Science Code 6390, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Alexander Efros
- Center for Computational Material Science Code 6390, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Marc Currie
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Kimihiro Susumu
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Sotera Defense Solutions, Inc. Columbia, MD 21046, USA
| | - Konrad Bussmann
- Materials and Sensors Branch Code 6361, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Ramasis Goswami
- Multifunctional Materials Code 6351, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Fredrik K. Fatemi
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
39
|
Li W, Yang X, He L, Wang K, Wang Q, Huang J, Liu J, Wu B, Xu C. Self-Assembled DNA Nanocentipede as Multivalent Drug Carrier for Targeted Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25733-25740. [PMID: 27622459 DOI: 10.1021/acsami.6b08210] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An idea drug carrier, with good binding affinity, selectivity, drug payload capacity, and cellular internalized capability, will greatly improve the efficiency of target delivery. Herein a self-assembled and multivalent DNA nanostructure was developed as drug carrier for efficient and targeted delivery. The DNA structure was similar to that of a centipede, composed of trunk and legs: The trunk was a self-assembled DNA scaffold via hybridization chain reaction (HCR) from two biotinylated hairpin monomers created upon initiation by a trigger DNA, and the legs were biotinylated aptamers conjugated to the trunk via streptavidin-biotin affinity interaction. The long trunk of the "DNA nanocentipede" was loaded with doxorubicin (Dox), and the legs were SMMC-7721 cell-binding aptamers (Zy1) which functioned as targeting moieties to firmly and selectively grasp target cells. The results of agarose gel electrophoresis and fluorescence anisotropy confirmed that Zy1-based DNA nanocentipedes (Zy1-Nces) were successfully constructed. Flow cytometric analyses demonstrated that Zy1-Nces were more effective than free Zy1 in binding affinity and selectivity due to a multivalent effect. Confocal microscopy studies demonstrated that the internalization was highly dependent on the higher valences of DNA nanocentipedes without the loss of selectivity. Meanwhile, Zy1-Nces exhibited high drug-loading capacity and selective drug transport. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed enhanced cellular cytotoxicity of the Dox-loaded Zy1-Nces (Zy1-Nces-Dox) to the target SMMC-7721 cells but not negative control L02 cells. This approach is applicable to prepare drug carriers for other targets by construction of the nanocentipedes with relevant nucleic acid fragments.
Collapse
Affiliation(s)
- Wenshan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Leiliang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Bin Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| | - Congcong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, China
| |
Collapse
|
40
|
Development of nanostructures in the diagnosis of drug hypersensitivity reactions. Curr Opin Allergy Clin Immunol 2016; 16:300-7. [DOI: 10.1097/aci.0000000000000282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Ramesh BS, Giorgakis E, Lopez-Davila V, Dashtarzheneha AK, Loizidou M. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters. NANOTECHNOLOGY 2016; 27:285101. [PMID: 27255548 DOI: 10.1088/0957-4484/27/28/285101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800-850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer.
Collapse
Affiliation(s)
- Bala Subramaniyam Ramesh
- Research Department of Nanotechnology, Division of Surgery and Interventional Science, University College London, Pond Street, London NW3 2QG, UK
| | | | | | | | | |
Collapse
|
42
|
Glass JJ, Kent SJ, De Rose R. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Rev Vaccines 2016; 15:719-29. [PMID: 26783186 DOI: 10.1586/14760584.2016.1141054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel vaccination approaches are needed to prevent and control human immunodeficiency virus (HIV) infection. A growing body of literature demonstrates the potential of nanotechnology to modulate the human immune system and generate targeted, controlled immune responses. In this Review, we summarize important advances in how 'nanovaccinology' can be used to develop safe and effective vaccines for HIV. We highlight the central role of dendritic cells in the immune response to vaccination and describe how nanotechnology can be used to enhance delivery to and activation of these important antigen-presenting cells. Strategies employed to improve biodistribution are discussed, including improved lymph node delivery and mucosal penetration concepts, before detailing methods to enhance the humoral and/or cellular immune response to vaccines. We conclude with a commentary on the current state of nanovaccinology.
Collapse
Affiliation(s)
- Joshua J Glass
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia
| | - Stephen J Kent
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia.,c Melbourne Sexual Health Centre and Department of Infectious Diseases , Alfred Health, Central Clinical School, Monash University , Melbourne , Australia
| | - Robert De Rose
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia
| |
Collapse
|
43
|
Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X. Self-Assembled Gold Nanoclusters for Bright Fluorescence Imaging and Enhanced Drug Delivery. ACS NANO 2016; 10:2591-9. [PMID: 26845515 DOI: 10.1021/acsnano.5b07596] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles combining enhanced cellular drug delivery with efficient fluorescence detection are important tools for the development of theranostic agents. Here, we demonstrate this concept by a simple, fast, and robust protocol of cationic polymer-mediated gold nanocluster (Au NCs) self-assembly into nanoparticles (NPs) of ca. 120 nm diameter. An extensive characterization of the monodisperse and positively charged NPs revealed pH-dependent swelling properties, strong fluorescence enhancement, and excellent colloidal and photostability in water, buffer, and culture medium. The versatility of the preparation is demonstrated by using different Au NC surface ligands and cationic polymers. Steady-state and time-resolved fluorescence measurements give insight into the aggregation-induced emission phenomenon (AIE) by tuning the Au NC interactions in the self-assembled nanoparticles using the pH-dependent swelling. In vitro studies in human monocytic cells indicate strongly enhanced uptake of the NPs compared to free Au NCs in endocytic compartments. The NPs keep their assembly structure with quite low cytotoxicity up to 500 μg Au/mL. Enhanced drug delivery is demonstrated by loading peptides or antibodies in the NPs using a one-pot synthesis. Fluorescence microscopy and flow cytometry confirmed intracellular colocalization of the biomolecules and the NP carriers with a respective 1.7-fold and 6.5-fold enhanced cellular uptake of peptides and antibodies compared to the free biomolecules.
Collapse
Affiliation(s)
- Akram Yahia-Ammar
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Daniel Sierra
- Therapeutic Nanosystems, The Andalusian Centre for Nanomedicine and Biotechnology, BIONAND , 29590 Málaga, Spain
| | - Fabienne Mérola
- Laboratoire de Chimie Physique, Université Paris-Saclay and Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Niko Hildebrandt
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Xavier Le Guével
- Therapeutic Nanosystems, The Andalusian Centre for Nanomedicine and Biotechnology, BIONAND , 29590 Málaga, Spain
| |
Collapse
|
44
|
le Guével X, Palomares F, Torres MJ, Blanca M, Fernandez TD, Mayorga C. Nanoparticle size influences the proliferative responses of lymphocyte subpopulations. RSC Adv 2015. [DOI: 10.1039/c5ra16164a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultra-small particles (<2 nm) lead to high cellular uptake without DC maturation and therefore lymphocyte proliferation whereas 12 nm gold nanoparticles induce cell mediated responses and accompanied by inflammatory natural killer cell stimulation.
Collapse
Affiliation(s)
- Xavier le Guével
- Therapeutic Nanosystem
- The Andalusian Centre for Nanomedicine and Biotechnology
- BIONAND
- Málaga
- Spain
| | - Francisca Palomares
- Research Laboratory and Allergy Service
- IBIMA
- Regional University Malaga Hospital
- UMA
- Málaga
| | - Maria J. Torres
- Research Laboratory and Allergy Service
- IBIMA
- Regional University Malaga Hospital
- UMA
- Málaga
| | - Miguel Blanca
- Research Laboratory and Allergy Service
- IBIMA
- Regional University Malaga Hospital
- UMA
- Málaga
| | - Tahia D. Fernandez
- Research Laboratory and Allergy Service
- IBIMA
- Regional University Malaga Hospital
- UMA
- Málaga
| | - Cristobalina Mayorga
- Research Laboratory and Allergy Service
- IBIMA
- Regional University Malaga Hospital
- UMA
- Málaga
| |
Collapse
|