1
|
Martinez-Pallares F, Herrera M, Graeve OA. Decomposition of Luminescent Hydroxyapatite Scaffolds in Simulated Body Fluid. ACS APPLIED BIO MATERIALS 2024; 7:3136-3142. [PMID: 38668729 DOI: 10.1021/acsabm.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
We present a luminescence study investigating the dissolution of rare-earth-doped hydroxyapatite scaffolds in simulated body fluid (SBF), aiming to assess the luminescence stability of Tb-, Ce-, and Eu-doped scaffolds over time. Our findings reveal a consistent decrease in luminescence emission intensity across all samples over a four-week period in which the scaffolds were immersed in the SBF. In addition, energy-dispersive spectroscopy confirms a decrease in rare-earth ion concentration in the scaffolds with respect to time, whereas fluorescence spectroscopy shows the presence of rare-earth ions in the SBF, indicating the partial dissolution of the scaffolds over time. The use of rare-earth ions as luminescence markers provides insights into the mechanisms of apatite formation in hydroxyapatites. Thus, these scaffolds may find wider use in regenerative medicine, particularly in targeted drug delivery systems, where their luminescent properties have the potential to noninvasively track drug release.
Collapse
Affiliation(s)
- Fabian Martinez-Pallares
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, California 92093-0418, United States
| | - Manuel Herrera
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California 22800, Mexico
| | - Olivia A Graeve
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, California 92093-0418, United States
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093-0411, United States
| |
Collapse
|
2
|
Hydrothermal Synthesis and In Vivo Fluorescent Bioimaging Application of Eu3+/Gd3+ Co-Doped Fluoroapatite Nanocrystals. J Funct Biomater 2022; 13:jfb13030108. [PMID: 35997446 PMCID: PMC9397069 DOI: 10.3390/jfb13030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, Eu3+/Gd3+ co-doped fluoroapatitååe (Eu/Gd:FAP) nanocrystals were synthesized by the hydrothermal method as a fluorescent bioimaging agent. The phase composition, morphology, fluorescence, and biosafety of the resulting samples were characterized. Moreover, the in vivo fluorescent bioimaging application of Eu/Gd:FAP nanocrystals was evaluated in mice with subcutaneously transplanted tumors. The results showed that the Eu/Gd:FAP nanocrystals were short rod-like particles with a size of 59.27 ± 13.34 nm × 18.69 ± 3.32 nm. With an increasing F substitution content, the Eu/Gd:FAP nanocrystals displayed a decreased size and enhanced fluorescence emission. Eu/Gd:FAP nanocrystals did not show hemolysis and cytotoxicity, indicating good biocompatibility. In vivo fluorescent bioimaging study demonstrated that Eu/Gd:FAP nanocrystals could be used as a bioimaging agent and displayed stable fluorescence emitting in tumors, indicating an accumulation in tumor tissue due to the passive targeting ability. In addition, any adverse effects of Eu/Gd:FAP nanocrystals on major organs were not observed. This study shows that biocompatible rare earth co-doped FAP nanocrystals have the potential to be used as a bioimaging agent in vivo.
Collapse
|
3
|
Zhang W, Zhou R, Yang Y, Peng S, Xiao D, Kong T, Cai X, Zhu B. Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for active tumour bioimaging and treatment. Cell Prolif 2021; 54:e13105. [PMID: 34382270 PMCID: PMC8450118 DOI: 10.1111/cpr.13105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The nano-hydroxyapatite (nHAp) is widely used to develop imaging probes and drug carriers due to its excellent bioactivity and biocompatibility. However, traditional methods usually need cumbersome and stringent conditions such as high temperature and post-modification to prepare the functionalized nHAp, which do not benefit the particles to enter cells due to the increased particle size. Herein, a biomimetic synthesis strategy was explored to achieve the AS1411-targeted tumour dual-model bioimaging using DNA aptamer AS1411 as a template. Then, the imaging properties and the biocompatibility of the synthesized AS-nFAp:Gd/Tb were further investigated. MATERIALS AND METHODS The AS-nFAp:Gd/Tb was prepared under mild conditions through a one-pot procedure with AS1411 as a template. Besides, the anticancer drug DOX was loaded to AS-nFAp:Gd/Tb so as to achieve the establishment of a multifunctional nano-probe that integrated the tumour diagnosis and treatment. The AS-nFAp:Gd/Tb was characterized by transmission electron microscopy (TEM), energy disperse X-ray Spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS) spectrum, X-ray diffraction (XRD), fourier-transformed infrared (FTIR) spectroscopy, capillary electrophoresis analyses, zeta potential and particle sizes. The in vitro magnetic resonance imaging (MRI) and fluorescence imaging were performed on an MRI system and a confocal laser scanning microscope, respectively. The potential of the prepared multifunctional nHAp for a targeted tumour therapy was investigated by a CCK-8 kit. And the animal experiments were conducted on the basis of the guidelines approved by the Animal Care and Use Committee of Sichuan University, China. RESULTS In the presence of AS1411, the as-prepared AS-nFAp:Gd/Tb presented a needle-like morphology with good monodispersity and improved imaging performance. Furthermore, due to the specific binding between AS1411 and nucleolin up-expressed in cancer cells, the AS-nFAp:Gd/Tb possessed excellent AS1411-targeted fluorescence and MRI imaging properties. Moreover, after loading chemotherapy drug DOX, in vitro and in vivo studies showed that DOX@AS-nFAp:Gd/Tb could effectively deliver DOX to tumour tissues and exert a highly effective tumour inhibition without systemic toxicity compared with pure DOX. CONCLUSIONS The results indicated that the prepared multifunctional nHAp synthesized by a novel biomimetic strategy had outstanding capabilities of recognition and treatment for the tumour and had good biocompatibility; hence, it might have a potential clinical application in the future.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Kong
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Genetics, Multi-Omics Innovative Research Center of Forensic Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Tian J, Zhou H, Jiang R, Chen J, Mao L, Liu M, Deng F, Liu L, Zhang X, Wei Y. Preparation and biological imaging of fluorescent hydroxyapatite nanoparticles with poly(2-ethyl-2-oxazoline) through surface-initiated cationic ring-opening polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110424. [PMID: 31923979 DOI: 10.1016/j.msec.2019.110424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
Fluorescent hydroxyapatite (HAp) nanoparticles have received significant attention in biomedical fields due to their outstanding advantages, such as low immunogenicity, excellent biocompatibility and biodegradability. However, fluorescent HAp nanoparticles with well controlled size and morphology are coated with hydrophobic molecules and their biomedical applications are largely restricted by their poor dispersibility in physiological solutions. Therefore, surface modification of these hydrophobic fluorescent HAp nanoparticles to render them water dispersibility is of utmost importance for biomedical applications. In this work, we reported for the first time for preparation of water-dispersible hydrophilic fluorescent Eu3+-doped HAp nanoparticles (named as HAp-PEOTx) through the cationic ring-opening polymerization using hydrophilic and biocompatible 2-ethyl-2-oxazoline (EOTx) as the monomer. The characterization techniques, such as nuclear magnetic resonance (NMR) spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) have been used to characterize these samples. Results confirmed that we could successfully obtain the hydrophilic fluorescent HAp-PEOTx composites through the strategy described above. These fluorescent HAp-PEOTx composites display great water dispersibility, unique fluorescent properties and excellent biocompatibility, making them promising for in vitro bioimaging applications.
Collapse
Affiliation(s)
- Jianwen Tian
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Huajian Zhou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liucheng Mao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liangji Liu
- Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang, Jiangxi 330006, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry, Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry, Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
5
|
Wu B, Li Y, Nie N, Xu J, An C, Liu Y, Wang Y, Chen Y, Gong L, Li Q, Giusto E, Bunpetch V, Zhang D, Ouyang H, Zou X. Nano genome altas (NGA) of body wide organ responses. Biomaterials 2019; 205:38-49. [DOI: 10.1016/j.biomaterials.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
6
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
7
|
Li F, Xing Q, Han Y, Li Y, Wang W, Perera TSH, Dai H. Ultrasonically assisted preparation of poly(acrylic acid)/calcium phosphate hybrid nanogels as pH-responsive drug carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:688-697. [DOI: 10.1016/j.msec.2017.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/30/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
|
8
|
The morphological evolution of hydroxyapatite on high-efficiency Pb2+ removal and antibacterial activity. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Neelgund GM, Oki AR. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J Colloid Interface Sci 2016; 484:135-145. [PMID: 27599382 DOI: 10.1016/j.jcis.2016.07.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
Abstract
Herein we present a successful strategy for enhancement of photothermal efficiency of hydroxyapatite (HAP) by its conjugation with carbon nanotubes (CNTs) and graphene nanosheets (GR). Owing to excellent biocompatibility with human body and its non-toxicity, implementation of HAP based nanomaterials in photothermal therapy (PTT) provides non-replaceable benefits over PTE agents. Therefore, in this report, it has been experimentally exploited that the photothermal effect (PTE) of HAP has significantly improved by its assembly with CNTs and GR. It is found that the type of carbon nanomaterial used to conjugate with HAP has influence on its PTE in such a way that the photothermal efficiency of GR-HAP was higher than CNTs-COOH-HAP under exposure to 980nm near-infrared (NIR) laser. The temperature attained by aqueous dispersions of both CNTs-COOH-HAP and GR-HAP after illuminating to NIR radiations for 7min was found to be above 50°C, which is beyond the temperature tolerance of cancer cells. So that the rise in temperature shown by both CNTs-COOH-HAP and GR-HAP is enough to induce the death of tumoral or cancerous cells. Overall, this approach in modality of HAP with CNTs and GR provide a great potential for development of future nontoxic PTE agents.
Collapse
Affiliation(s)
- Gururaj M Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Aderemi R Oki
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|
10
|
Xie Y, He W, Li F, Perera TSH, Gan L, Han Y, Wang X, Li S, Dai H. Luminescence Enhanced Eu(3+)/Gd(3+) Co-Doped Hydroxyapatite Nanocrystals as Imaging Agents In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10212-10219. [PMID: 27043792 DOI: 10.1021/acsami.6b01814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biocompatible, biodegradable, and luminescent nano material can be used as an alternative bioimaging agent for early cancer diagnosis, which is crucial to achieve successful treatment. Hydroxyapatite (HAP) nanocyrstals have good biocompatibility and biodegradability, and can be used as an excellent host for luminescent rare earth elements. In this study, based on the energy transfer from Gd(3+) to Eu(3+), the luminescence enhanced imaging agent of Eu/Gd codoping HAP (HAP:Eu/Gd) nanocrystals are obtained via coprecipitation with plate-like shape and no change in crystal phase composition. The luminescence can be much elevated (up to about 120%) with a nonlinear increase versus Gd doping content, which is due to the energy transfer ((6)PJ of Gd(3+) → (5)HJ of Eu(3+)) under 273 nm and the possible combination effect of the cooperative upconversion and the successive energy transfer under 394 nm, respectively. Results demonstrate that the biocompatible HAP:Eu/Gd nanocrystals can successfully perform cell labeling and in vivo imaging. The intracellular HAP:Eu/Gd nanocrystals display good biodegradability with a cumulative degradation of about 65% after 72 h. This biocompatible, biodegradable, and luminescence enhanced HAP:Eu/Gd nanocrystal has the potential to act as a fluorescent imaging agent in vitro and in vivo.
Collapse
Affiliation(s)
- Yunfei Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P. R. China
| | - Wangmei He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P. R. China
| | - Fang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P. R. China
| | - Thalagalage Shalika Harshani Perera
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka , 70140 Belihuloya, Sri Lanka
| | - Lin Gan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P. R. China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P. R. China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P. R. China
| | - Shipu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P. R. China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, P. R. China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology , Wuhan 430070, P. R. China
| |
Collapse
|
11
|
Lei K, Ma Q, Yu L, Ding J. Functional biomedical hydrogels for in vivo imaging. J Mater Chem B 2016; 4:7793-7812. [DOI: 10.1039/c6tb02019d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo imaging of biomedical hydrogels enables real-time and non-invasive visualization of the status of structure and function of hydrogels.
Collapse
Affiliation(s)
- Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Qian Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|