1
|
Ryabchun A, Lancia F, Katsonis N. Light-Fueled Nanoscale Surface Waving in Chiral Liquid Crystal Networks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4777-4784. [PMID: 33428396 PMCID: PMC7844818 DOI: 10.1021/acsami.0c20006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 05/06/2023]
Abstract
Nano- and micro-actuating systems are promising for application in microfluidics, haptics, tunable optics, and soft robotics. Surfaces capable to change their topography at the nano- and microscale on demand would allow control over wettability, friction, and surface-driven particle motility. Here, we show that light-responsive cholesteric liquid crystal (LC) networks undergo a waving motion of their surface topography upon irradiation with light. These dynamic surfaces are fabricated with a maskless one-step procedure, relying on the liquid crystal alignment in periodic structures upon application of a weak electric field. The geometrical features of the surfaces are controlled by tuning the pitch of the liquid crystal. Pitch control by confinement allows engineering one-dimensional (1D) and two-dimensional (2D) structures that wave upon light exposure. This work demonstrates the potential that self-organizing systems might have for engineering dynamic materials, and harnessing the functionality of molecules to form dynamic surfaces, with nanoscale precision over their waving motion.
Collapse
Affiliation(s)
- Alexander Ryabchun
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Federico Lancia
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Nathalie Katsonis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
2
|
Zhu C, Lu Y, Sun J, Yu Y. Dynamic Interfacial Regulation by Photodeformable Azobenzene-Containing Liquid Crystal Polymer Micro/Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6611-6625. [PMID: 32449856 DOI: 10.1021/acs.langmuir.0c00582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoresponsive materials offer local, temporal, and remote control over their chemical or physical properties under external stimuli, giving new tools for interfacial regulation. Among all, photodeformable azobenzene-containing liquid crystal polymers (azo-LCPs) have received increasing attention because they can be processed into various micro/nanostructures and have the potential to reversibly tune the interfacial properties through chemical and/or morphological variation by light, providing effective dynamic interface regulation. In this feature article, we highlight the milestones in the dynamic regulation of different interfacial properties through micro/nanostructures made of photodeformable azobenzene-containing liquid crystal polymers (azo-LCPs). We describe the preparation of different azo-LCP micro/nanostructures from the aspects of materials and processing techniques and reveal the importance of mesogen orientation toward dynamic interfacial regulation. By introducing our recently developed linear azo-LCP (azo-LLCP) with good mechanical and photoresponsive performances, we discuss the challenge and opportunity with respect to the dynamic light regulation of two- and three-dimensional (2D/3D) micro/nanostructures to tune their related interfacial properties. We have also given our expectation toward exploring photodeformable micro/nanostructures for advanced applications such as in microfluidics, biosensors, and nanotherapeutics.
Collapse
Affiliation(s)
- Chongyu Zhu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yao Lu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jiahao Sun
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
3
|
Lee J, Guo Y, Choi YJ, Jung S, Seol D, Choi S, Kim JH, Kim Y, Jeong KU, Ahn SK. Mechanically programmed 2D and 3D liquid crystal elastomers at macro- and microscale via two-step photocrosslinking. SOFT MATTER 2020; 16:2695-2705. [PMID: 32057062 DOI: 10.1039/c9sm02237f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid crystal elastomers (LCEs) are a unique class of active materials with the largest known reversible shape transformation in the solid state. The shape change of LCEs is directed by programming their molecular orientation, and therefore, several strategies to control LC alignment have been developed. Although mechanical alignment coupled with a two-step crosslinking is commonly adopted for uniaxially-aligned monodomain LCE synthesis, the fabrication of 3D-shaped LCEs at the macro- and microscale has been rarely accomplished. Here, we report a facile processing method for fabricating 2D and 3D-shaped LCEs at the macro- and microscales at room temperature by mechanically programming (i.e., stretching, pressing, embossing and UV-imprinting) the polydomain LCE, and subsequent photocrosslinking. The programmed LCEs exhibited a reversible shape change when exposed to thermal and chemical stimuli. Besides the programmed shape changes, the actuation strain can also be preprogrammed by adjusting the extent of elongation of a polydomain LCE. Furthermore, the LCE micropillar arrays prepared by UV-imprinting displayed a substantial change in pillar height in a reversible manner during thermal actuation. Our convenient method for fabricating reversible 2D and 3D-shaped LCEs from commercially available materials may expedite the potential applications of LCEs in actuators, soft robots, smart coatings, tunable optics and medicine.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pang X, Lv JA, Zhu C, Qin L, Yu Y. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904224. [PMID: 31595576 DOI: 10.1002/adma.201904224] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/10/2019] [Indexed: 05/22/2023]
Abstract
Photodeformable liquid crystal polymers (LCPs) that adapt their shapes in response to light have aroused a dramatic growth of interest in the past decades, since light as a stimulus enables the remote control and diverse deformations of materials. This review focuses on the growing research on photodeformable LCPs, including their basic actuation mechanisms, the various deformation modes, the newly designed molecular structures, and the improvement of processing techniques. Special attention is devoted to the novel molecular structures of LCPs, which allow for easy processing and alignment. The soft actuators with various deformation modes such as bending, twisting, and rolling in response to light are also covered with the emphasis on their photo-induced bionic functions. Potential applications in energy harvesting, self-cleaning surfaces, sensors, and photo-controlled microfluidics are further illustrated. The existing challenges and future directions are discussed at the end of this review.
Collapse
Affiliation(s)
- Xinlei Pang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jiu-An Lv
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Chongyu Zhu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Lang Qin
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yanlei Yu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
5
|
Guo Y, Lee J, Son J, Ahn SK, Carrillo JMY, Sumpter BG. Decoding Liquid Crystal Oligomer Phase Transitions: Toward Molecularly Engineered Shape Changing Materials. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuanhang Guo
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Jieun Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Jinha Son
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Suk-kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Visschers FLL, Hendrikx M, Zhan Y, Liu D. Liquid crystal polymers with motile surfaces. SOFT MATTER 2018; 14:4898-4912. [PMID: 29892763 DOI: 10.1039/c8sm00524a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In analogy with developments in soft robotics it is anticipated that soft robotic functions at surfaces of objects may have a large impact on human life with respect to comfort, health, medical care and energy. In this review, we demonstrate the possibilities and versatilities of liquid crystal networks and elastomers being explored for soft robotics, with an emphasis on motile surface properties, such as topographical dynamics. Typically the surfaces reversibly transfer from a flat state to a pre-designed corrugated state under various stimuli. But also reversible conversion between different corrugated states is feasible. Generally, the driving triggers are heat, light, electricity or contact with pH changing media. Also, the macroscopic effects of those dynamic topographies, such as altering the friction, wettability and/or performing work are illustrated. The review concludes with the existing challenges as well as outlook opportunities.
Collapse
Affiliation(s)
- Fabian L L Visschers
- Laboratory of Functional Organic Materials & Devices, Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Liu Y, Wu W, Wei J, Yu Y. Visible Light Responsive Liquid Crystal Polymers Containing Reactive Moieties with Good Processability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:782-789. [PMID: 28001030 DOI: 10.1021/acsami.6b11550] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two types of novel reactive linear liquid crystal polymers (LLCPs) with different azotolene concentrations have been synthesized and processed into films and fibers by solution and melting processing methods. Then, the LLCPs in the obtained monodomain fiber and polydomain film were easily cross-linked with difunctional primary amines. The resulted cross-linked liquid crystal polymers (CLCPs) underwent reversible photoinduced bending and unbending behaviors in response to 445 and 530 nm visible light at room temperature, respectively. The post-cross-linking method provides a facile way to prepare the CLCP films and fibers with different shapes from LLCPs, which can be processed by traditional melting and solution methods.
Collapse
Affiliation(s)
- Yuyun Liu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Wei Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Jia Wei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Yanlei Yu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| |
Collapse
|
8
|
Kothary P, Dou X, Fang Y, Gu Z, Leo SY, Jiang P. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach. J Colloid Interface Sci 2016; 487:484-492. [PMID: 27816014 DOI: 10.1016/j.jcis.2016.10.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022]
Abstract
Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays.
Collapse
Affiliation(s)
- Pratik Kothary
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xuan Dou
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yin Fang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhuxiao Gu
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sin-Yen Leo
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Peng Jiang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|