1
|
Parambath JBM, Vijai Anand K, Ahmady IM, Hasan K, Alawadhi H, Lee H, Han C, Mohamed AA. Surface Modification of Magnetite with Carboxyl Arylated Gold Nanoparticles for Capture and Removal of Bacteria. Inorg Chem 2025; 64:4555-4570. [PMID: 40014457 DOI: 10.1021/acs.inorgchem.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
This study presents a novel synthesis method for fabricating magnetic-plasmonic Fe3O4@CS-AuNPs nanocomposite utilizing aryldiazonium gold(III) salts. The low reduction potential of aryldiazonium gold salts enables their spontaneous reduction on the surface of Fe3O4 NPs stabilized with chitosan (CS), as CS facilitates the electron transfer process. The Fe3O4@CS-AuNPs nanocomposite exhibited gold plasmon peaks at 525 nm in UV-vis spectra and demonstrated long shelf life in an aqueous solution, with a ζ-potential of -42.8 mV. XPS revealed the complete reduction of gold(III) supported by the Au 4f peak for Fe3O4@CS-AuNPs. The increased Fe(II) ratio in XPS suggests a green reduction, where chitosan reduced Au(III) to Au(0). HR-TEM images demonstrated that Fe3O4@CS-AuNPs have an average nanoparticle size of 17.0 ± 3.8 nm. The high surface area of 55.15 m2/g for Fe3O4@CS-AuNPs supports their enhanced adsorption and removal of E. coli bacteria. Fe3O4@CS-AuNPs exhibited superior removal efficiencies of 100%, 99%, and 97%, outperforming Fe3O4@CS bacteria removal of 3%, 21%, and 40%. Surface modification with arylated AuNPs enhanced the adsorption and bacterial binding, enabling Fe3O4@CS-AuNPs to demonstrate high capture efficiency and bactericidal activity, eliminating viable bacteria at a minimum inhibitory concentration (MIC) of 50%. These findings highlight the potential of Fe3O4@CS-AuNPs for enhanced microbial removal.
Collapse
Affiliation(s)
- Javad B M Parambath
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
- Department of Chemistry, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Kabali Vijai Anand
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Islam M Ahmady
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kamrul Hasan
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussain Alawadhi
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics & Astronomy, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Haesung Lee
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, Incheon 22212, Korea
| | - Changseok Han
- Program in Environmental and Polymer Engineering, Graduate School of INHA University, Incheon 22212, Korea
- Department of Environmental Engineering, INHA University, Incheon 22212, Korea
| | - Ahmed A Mohamed
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
2
|
Liao ZH, Chuang CY, Chen YY, Chu YT, Hu YF, Lee PT, Lin JJ, Nan FH. Application of nZnO supported with nanoclay for improving shrimp immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109270. [PMID: 38070587 DOI: 10.1016/j.fsi.2023.109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/31/2023]
Abstract
This study discloses the nanoscale silicate platelet-supported nZnO (ZnONSP) applied as novel feed additives in aquaculture. The preparation of the nanohybrid (ZnO/NSP = 15/85, w/w) was characterized by UV-visible spectroscopy, powder X-ray diffraction and transmission electron microscope. The effects of ZnONSP on growth, zinc accumulation, stress response, immunity and resistance to Vibrio alginolyticus in white shrimp (Penaeus vannamei) were \demonstrated. To evaluate the safety of ZnONSP, shrimps (2.0 ± 0.3 g) were fed with ZnONSP containing diets (200, 400 and 800 mg/kg) for 56 days. Dietary ZnONSP did not affect the weight gain, specific growth rate, feed conversion ratio, survival rate, zinc accumulation, and the expression of heat shock protein 70 in tested shrimps. To examine the immunomodulatory effect of ZnONSP, shrimps (16.6 ± 2.4 g) were fed with the same experimental diets for 28 days. Dietary ZnONSP improved the immune responses of haemocyte in tested shrimps, including phagocytic rate, phagocytic index, respiratory burst, and phenoloxidase activity, and upregulated the expression of several genes, including lipopolysaccharide, β-1,3-glucan binding protein, peroxinectin, penaeidin 2/3/4, lysozyme, crustin, anti-lipopolysaccharide factor, superoxide dismutase, glutathione peroxidase, clotting protein and α-2-macroglobulin. In the challenge experiment, shrimps (17.2 ± 1.8 g) were fed with ZnONSP containing diets (400 and 800 mg/kg) for 7 days and then infected with Vibrio alginolyticus. Notably, white shrimps that received ZnONSP (800 mg/kg) showed significantly improved Vibrio resistance, with a survival rate of 71.4 % at the end of 7-day observation. In conclusion, this study discovers that ZnONSP is a new type of immunomodulatory supplement that are effective on enhancing innate cellular and humoral immunities, and disease resistance in white shrimp.
Collapse
Affiliation(s)
- Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Chieh-Yuan Chuang
- Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, No. 4, Haipu, Qigu District, Tainan City, 72453, Taiwan
| | - Yin-Yu Chen
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yu-Ting Chu
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei City, 10617, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan.
| |
Collapse
|
3
|
Xie W, Chen Y, Yang H. Layered Clay Minerals in Cancer Therapy: Recent Progress and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300842. [PMID: 37093210 DOI: 10.1002/smll.202300842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Cancer is one of the deadliest diseases, and current treatment regimens suffer from limited efficacy, nonspecific toxicity, and chemoresistance. With the advantages of good biocompatibility, large specific surface area, excellent cation exchange capacity, and easy availability, clay minerals have been receiving ever-increasing interests in cancer treatment. They can act as carriers to reduce the toxic side effects of chemotherapeutic drugs, and some of their own properties can kill cancer cells, etc. Compared with other morphologies clays, layered clay minerals (LCM) have attracted more and more attention due to adjustable interlayer spacing, easier ion exchange, and stronger adsorption capacity. In this review, the structure, classification, physicochemical properties, and functionalization methods of LCM are summarized. The state-of-the-art progress of LCM in antitumor therapy is systematically described, with emphasis on the application of montmorillonite, kaolinite, and vermiculite. Furthermore, the property-function relationships of LCM are comprehensively illustrated to reveal the design principles of clay-based antitumor systems. Finally, foreseeable challenges and outlook in this field are discussed.
Collapse
Affiliation(s)
- Weimin Xie
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
4
|
Chang CH, Tsai LH, Lee YC, Yao WC, Lin JJ. Synergistic Effects of Silicate-Platelet Supporting Ag and ZnO, Offering High Antibacterial Activity and Low Cytotoxicity. Int J Mol Sci 2023; 24:ijms24087024. [PMID: 37108187 PMCID: PMC10138669 DOI: 10.3390/ijms24087024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Silver nanoparticles (AgNPs) are remarkably able to eliminate microorganisms, but induce cytotoxicity in mammalian cells, and zinc oxide nanoparticles (ZnONPs) are considered to have a wide bactericidal effect with weak cytotoxicity. In this study, both zinc oxide nanoparticles and silver nanoparticles were co-synthesized on a nano-silicate platelet (NSP) to prepare a hybrid of AgNP/ZnONP/NSP. Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the formation of nanoparticles on the NSP. Synthesized ZnONP/NSP (ZnONP on NSP) was confirmed by the absorption peaks on UV-Vis and XRD. AgNP synthesized on ZnONP/NSP was also characterized by UV-Vis, and ZnONP/NSP showed no interference with synthesis. The images of TEM demonstrated that NSP provides physical support for the growth of nanoparticles and could prevent the inherent aggregation of ZnONP. In antibacterial tests, AgNP/ZnONP/NSP exhibited more efficacy against Staphylococcus aureus (S. aureus) than ZnONP/NSP (ZnONP was synthesized on NSP) and AgNP/NSP (AgNP was synthesized on NSP). In cell culture tests, 1/10/99 (weight ratio) of AgNP/ZnONP/NSP exhibited low cytotoxicity for mammalian cells (>100 ppm). Therefore, AgNP/ZnONP/NSP, containing both AgNP and ZnONP, with both strong antibacterial qualities and low cytotoxicity, showed potentially advantageous medical utilizations due to its antibacterial properties.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Li-Hui Tsai
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Chen Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, Taoyuan 330, Taiwan
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Yang MC, Hardiansyah A, Cheng YW, Liao HL, Wang KS, Randy A, Harito C, Chen JS, Jeng RJ, Liu TY. Reduced graphene oxide nanosheets decorated with core-shell of Fe 3O 4-Au nanoparticles for rapid SERS detection and hyperthermia treatment of bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121578. [PMID: 35797953 DOI: 10.1016/j.saa.2022.121578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, the core-shell of Fe3O4-Au nanoparticles (NPs) were prepared by seeding AuNPs onto Fe3O4 NPs modified with poly-ethylenimine (PEI). Later, Fe3O4-Au NPs were attached to cationic poly(dimethyldiallylammonium chloride) (PDDA)-modified graphene oxide (GO) nanosheets through in situ self-assembly behaviors, termed as Fe3O4-Au@RGO nanocomposites, for surface-enhanced Raman scattering (SERS) detection and hyperthermia treatment of bacteria. The resulting Fe3O4-Au@RGO nanocomposites were evaluated systematically by transmission electron microscope, zeta potential, X-ray diffraction, X-ray photoelectron spectroscopy, and vibrating sample magnetometer. It revealed that the core-shell structured Fe3O4-Au NPs were dispersed homogeneously on the surface of the GO nanosheets. Furthermore, the rapid SERS detection for small biomolecules and bacteria was conducted by Raman spectroscopy. The results showed that the greatest SERS intensity was fne tuned at the weight ratio of Fe3O4-Au/RGO nanosheets was 20/1, displaying the optimal interparticle gap of AuNPs to induce the huge hot-spots effect. The magnetic inductive heating capability of Fe3O4-Au@RGO nanocomposites was produced under high frequency magnetic field exposure and can kill high than 90% of the bacteria at 10 min. Hence, the newly developed Fe3O4-Au@RGO nanocomposites were demonstrated to be viable for SERS detection of biomolecules and microbes and potential applications for magnetically capturing and hyperthermia treatment of bacteria.
Collapse
Affiliation(s)
- Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Andri Hardiansyah
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Banten, Indonesia
| | - Yu-Wei Cheng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| | - Hung-Liang Liao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Kuan-Syun Wang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ahmad Randy
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten 15314, Indonesia
| | - Christian Harito
- Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, 11480 Jakarta, Indonesia
| | - Jeng-Shiung Chen
- Yottadeft Optoelectronics Technology Co., Ltd., Taipei 10460, Taiwan
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
6
|
Dsouza A, Constantinidou C, Arvanitis TN, Haddleton DM, Charmet J, Hand RA. Multifunctional Composite Hydrogels for Bacterial Capture, Growth/Elimination, and Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47323-47344. [PMID: 36222596 PMCID: PMC9614723 DOI: 10.1021/acsami.2c08582] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Hydrogels are cross-linked networks of hydrophilic polymer chains with a three-dimensional structure. Owing to their unique features, the application of hydrogels for bacterial/antibacterial studies and bacterial infection management has grown in importance in recent years. This trend is likely to continue due to the rise in bacterial infections and antimicrobial resistance. By exploiting their physicochemical characteristics and inherent nature, hydrogels have been developed to achieve bacterial capture and detection, bacterial growth or elimination, antibiotic delivery, or bacterial sensing. Traditionally, the development of hydrogels for bacterial/antibacterial studies has focused on achieving a single function such as antibiotic delivery, antibacterial activity, bacterial growth, or bacterial detection. However, recent studies demonstrate the fabrication of multifunctional hydrogels, where a single hydrogel is capable of performing more than one bacterial/antibacterial function, or composite hydrogels consisting of a number of single functionalized hydrogels, which exhibit bacterial/antibacterial function synergistically. In this review, we first highlight the hydrogel features critical for bacterial studies and infection management. Then, we specifically address unique hydrogel properties, their surface/network functionalization, and their mode of action for bacterial capture, adhesion/growth, antibacterial activity, and bacterial sensing, respectively. Finally, we provide insights into different strategies for developing multifunctional hydrogels and how such systems can help tackle, manage, and understand bacterial infections and antimicrobial resistance. We also note that the strategies highlighted in this review can be adapted to other cell types and are therefore likely to find applications beyond the field of microbiology.
Collapse
Affiliation(s)
- Andrea Dsouza
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | | | - Theodoros N. Arvanitis
- Institute
of Digital Healthcare, Warwick Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - David M. Haddleton
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - Jérôme Charmet
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
- Warwick
Medical School, The University of Warwick, Coventry, United Kingdom CV4 7AL
- School
of Engineering—HE-Arc Ingénierie, HES-SO University of Applied Sciences Western Switzerland, 2000 Neuchâtel, Switzerland
| | - Rachel A. Hand
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| |
Collapse
|
7
|
Fabrication of in situ magnetic capturing and Raman enhancing nanoplatelets for detection of bacteria and biomolecules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Hardiansyah A, Yang MC, Liao HL, Cheng YW, Destyorini F, Irmawati Y, Liu CM, Yung MC, Hsu CC, Liu TY. Magnetic Graphene-Based Sheets for Bacteria Capture and Destruction Using a High-Frequency Magnetic Field. NANOMATERIALS 2020; 10:nano10040674. [PMID: 32260211 PMCID: PMC7221870 DOI: 10.3390/nano10040674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022]
Abstract
Magnetic reduced graphene oxide (MRGO) sheets were prepared by embedding Fe3O4 nanoparticles on polyvinylpyrrolidone (PVP) and poly(diallyldimethylammonium chloride) (PDDA)-modified graphene oxide (GO) sheets for bacteria capture and destruction under a high-frequency magnetic field (HFMF). The characteristics of MRGO sheets were evaluated systematically by transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential measurement, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that magnetic nanoparticles (8–10 nm) were dispersed on MRGO sheets. VSM measurements confirmed the superparamagnetic characteristics of the MRGO sheets. Under HFMF exposure, the temperature of MRGO sheets increased from 25 to 42 °C. Furthermore, we investigated the capability of MRGO sheets to capture and destroy bacteria (Staphylococcus aureus). The results show that MRGO sheets could capture bacteria and kill them through an HFMF, showing a great potential in magnetic separation and antibacterial application.
Collapse
Affiliation(s)
- Andri Hardiansyah
- Research Center for Physics, Indonesian Institute of Sciences, Tangerang Selatan 15314, Indonesia; (A.H.); (F.D.); (Y.I.)
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (M.-C.Y.); (H.-L.L.)
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (M.-C.Y.); (H.-L.L.)
| | - Hung-Liang Liao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (M.-C.Y.); (H.-L.L.)
| | - Yu-Wei Cheng
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Y.-W.C.); (C.-M.L.)
| | - Fredina Destyorini
- Research Center for Physics, Indonesian Institute of Sciences, Tangerang Selatan 15314, Indonesia; (A.H.); (F.D.); (Y.I.)
| | - Yuyun Irmawati
- Research Center for Physics, Indonesian Institute of Sciences, Tangerang Selatan 15314, Indonesia; (A.H.); (F.D.); (Y.I.)
| | - Chi-Ming Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Y.-W.C.); (C.-M.L.)
| | - Ming-Chi Yung
- Department of Cardiovascular Surgery, Taiwan Adventist Hospital, and School of Medicine, National Yang Ming University, Taipei 105, Taiwan;
| | - Chuan-Chih Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (C.-C.H.); (T.-Y.L.)
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; (Y.-W.C.); (C.-M.L.)
- Correspondence: (C.-C.H.); (T.-Y.L.)
| |
Collapse
|
9
|
Wang X, Wan R, Gu H, Fu G, Tang H, Hu G. Well-water-dispersed N-trimethyl chitosan/Fe 3O 4 hybrid nanoparticles as peroxidase mimetics for quick and effective elimination of bacteria. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:969-983. [PMID: 32085685 DOI: 10.1080/09205063.2020.1733751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fe3O4 nanoparticles, used as peroxidase mimetics, exhibit splendid future in the biomedical field. However, the functionalization on Fe3O4 nanoparticles always goes with the loss of superparamagnetism and decrease in peroxidase-activity. Here, we synthesized green polyethylene glycol (PEG)-functionalized magnetic/N-trimethyl chitosan (CS) hybrid nanoparticles (Fe3O4@PAA/TMC/PEG NPs) with improved water dispersibility, superparamagnetism, high saturation magnetization and well peroxidase-like activity. The functionalized coating was divided in two steps, one involved a cross-linked PEG/PAA/CS middle layer to protect the nanocrystal Fe3O4 from oxidization, the other was a hydrophilic PEG/TMC outer layer improving the water dispersion, biocompatibility, as well as supplying positive quaternary ammonium groups for a potential increase of cell binding efficiency. The structure, composition and morphology of Fe3O4@PAA/TMC/PEG NPs were characterized by TEM, FT-IR spectroscopy, DLS, zeta potential measurement, respectively. Thermal performance was characterized by TGA, and the peroxidase-like mimics activity was tested by TMB·2HCl colour development experiments. The magnetic property of the as-prepared hybrid nanoparticles was first confirmed by VSM, and then proved by the bacterial pathogens adsorption, especially at ultralow pathogen concentration. Particularly, with an external magnet, the Fe3O4@PAA/TMC/PEG NPs, combined cationic quaternary ammonium groups and peroxidise-mimetic catalytic activity, were tested for antibacterial effect by plating method.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Rongxin Wan
- Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Hanqing Gu
- Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guoqi Fu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Department of Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Huiqin Tang
- Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guoying Hu
- Tianjin Institute of Urology, The Second Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
10
|
Zhao D, Lin K, Wang L, Qiu Z, Zhao X, Du K, Han L, Tian F, Chang Y. A physical approach for the estimation of the SERS enhancement factor through the enrichment and separation of target molecules using magnetic adsorbents. RSC Adv 2020; 10:20028-20037. [PMID: 35520413 PMCID: PMC9054121 DOI: 10.1039/d0ra03019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 11/21/2022] Open
Abstract
The controllable synthesis of nanosized Fe3O4 (10–20 nm) encapsulated in different numbers of graphene layers (1–5 layers) (Fe3O4@DGL NPs) was realized through a facile and green hydrothermal reaction at a temperature as low as 200 °C.
Collapse
Affiliation(s)
- Danhui Zhao
- Tianjin Key Laboratory of TCM Chemistry and Analysis
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- P. R. China
| | - Kui Lin
- Analytical Instrumentation Centre
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Lanhui Wang
- Tianjin Key Laboratory of TCM Chemistry and Analysis
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- P. R. China
| | - Zhigang Qiu
- Department of Environment and Health
- Tianjin Institute of Environmental and Operational Medicine
- Tianjin 300050
- P. R. China
| | - Xin Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- P. R. China
| | - Kunze Du
- Tianjin Key Laboratory of TCM Chemistry and Analysis
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- P. R. China
| | - Lifeng Han
- Tianjin Key Laboratory of TCM Chemistry and Analysis
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- P. R. China
| | - Fei Tian
- Tianjin Key Laboratory of TCM Chemistry and Analysis
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- P. R. China
| | - Yanxu Chang
- Tianjin Key Laboratory of TCM Chemistry and Analysis
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- P. R. China
| |
Collapse
|
11
|
Gutekunst SB, Siemsen K, Huth S, Möhring A, Hesseler B, Timmermann M, Paulowicz I, Mishra YK, Siebert L, Adelung R, Selhuber-Unkel C. 3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic Acanthamoeba Castellanii. ACS Biomater Sci Eng 2019; 5:1784-1792. [PMID: 30984820 PMCID: PMC6457568 DOI: 10.1021/acsbiomaterials.8b01009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Porous hydrogel scaffolds are ideal candidates for mimicking cellular microenvironments, regarding both structural and mechanical aspects. We present a novel strategy to use uniquely designed ceramic networks as templates for generating hydrogels with a network of interconnected pores in the form of microchannels. The advantages of this new approach are the high and guaranteed interconnectivity of the microchannels, as well as the possibility to produce channels with diameters smaller than 7 μm. Neither of these assets can be ensured with other established techniques. Experiments using the polyacrylamide substrates produced with our approach have shown that the migration of human pathogenic Acanthamoeba castellanii trophozoites is manipulated by the microchannel structure in the hydrogels. The parasites can even be captured inside the microchannel network and removed from their incubation medium by the porous polyacrylamide, indicating the huge potential of our new technique for medical, pharmaceutical, and tissue engineering applications.
Collapse
Affiliation(s)
- Sören B Gutekunst
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Katharina Siemsen
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Steven Huth
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Anneke Möhring
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Britta Hesseler
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Michael Timmermann
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | | | - Yogendra Kumar Mishra
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Leonard Siebert
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Rainer Adelung
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Christine Selhuber-Unkel
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| |
Collapse
|
12
|
Essandoh M, Garcia RA. Efficient removal of dyes from aqueous solutions using a novel hemoglobin/iron oxide composite. CHEMOSPHERE 2018; 206:502-512. [PMID: 29778075 DOI: 10.1016/j.chemosphere.2018.04.182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Magnetic particles entrapped in different matrices that display high thermal stability, low toxicity, interactive functions at the surface, and high saturation magnetization are of great interest. The objective of this work was to synthesize a novel hemoglobin/iron oxide composite (Hb/Fe3O4) for the removal of different dyes (indigo carmine, naphthol blue black, tartrazine, erythrosine, eriochrome black T and bromophenol blue) from aqueous solutions. The Hb/Fe3O4 composite was characterized using scanning electron microscopy (SEM), laser diffraction particle size analysis, FT-IR spectroscopy, isoelectric point determination and thermogravimetric analysis (TGA). The Hb/Fe3O4 composite showed high removal efficiency toward all the different classes of dyes studied and the mechanism of adsorption was dominated by electrostatic interaction. Adsorption was found to follow pseudo-second order kinetic model and Langmuir isotherm. The Langmuir monolayer adsorption capacities for all the dyes range from 80 to 178 mg/g. The Hb/Fe3O4 composite possesses extra advantage of being easily isolated from aqueous suspension using an external magnet. The stability of the prepared Hb/Fe3O4 composite was also demonstrated.
Collapse
Affiliation(s)
- Matthew Essandoh
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Biobased and Other Animal Coproducts Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Rafael A Garcia
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Biobased and Other Animal Coproducts Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
13
|
Tung HY, Guan ZY, Liu TY, Chen HY. Vapor sublimation and deposition to build porous particles and composites. Nat Commun 2018; 9:2564. [PMID: 29967443 PMCID: PMC6028631 DOI: 10.1038/s41467-018-04975-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/30/2018] [Indexed: 11/09/2022] Open
Abstract
The vapor deposition of polymers on regular stationary substrates is widely known to form uniform thin films. Here we report porous polymer particles with sizes controllable down to the nanometer scale can be produced using a fabrication process based on chemical vapor deposition (CVD) on a dynamic substrate, i.e., sublimating ice particles. The results indicate that the vapor deposition of a polymer is directed by the sublimation process; instead of forming a thin film polymer, the deposited polymers replicated the size and shape of the ice particle. Defined size and porosity of the polymer particles are controllable with respect to varying the processing time. Extendable applications are shown to install multiple functional sites on the particles in one step and to localize metals/oxides forming composite particles. In addition, one fabrication cycle requires approximately 60 min to complete, and potential scaling up the production of the porous particles is manageable.
Collapse
Affiliation(s)
- Hsing-Ying Tung
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Zhen-Yu Guan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
14
|
Halouane F, Jijie R, Meziane D, Li C, Singh SK, Bouckaert J, Jurazek J, Kurungot S, Barras A, Li M, Boukherroub R, Szunerits S. Selective isolation and eradication of E. coli associated with urinary tract infections using anti-fimbrial modified magnetic reduced graphene oxide nanoheaters. J Mater Chem B 2017; 5:8133-8142. [PMID: 32264652 DOI: 10.1039/c7tb01890h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fast and efficient elimination of pathogenic bacteria from water, food or biological samples such as blood remains a challenging task. Magnetic isolation of bacteria from complex media holds particular promise for water disinfection and other biotechnological applications employing bacteria. When it comes to infectious diseases such as urinary tract infections, the selective removal of the pathogenic species in complex media such as human serum is also of importance. This issue can only be accomplished by adding pathogen specific targeting sites onto the magnetic nanostructures. In this work, we investigate the potential of 2-nitrodopamine modified magnetic particles anchored on reduced graphene oxide (rGO) nanocomposites for rapid capture and efficient elimination of E. coli associated with urinary tract infections (UTIs) from water and serum samples. An optimized magnetic nanocarrier achieves a 99.9% capture efficiency even at E. coli concentrations of 1 × 101 cfu mL-1 in 30 min. In addition, functionalization of the nanostructures with poly(ethylene glycol) modified pyrene units and anti-fimbrial E. coli antibodies allowed specific elimination of E. coli UTI89 from serum samples. Irradiation of the E. coli loaded nanocomposite with a near-infrared laser results in the total ablation of the captured pathogens. This method can be flexibly modified for any other pathogenic bacteria, depending on the antibodies used, and might be an interesting alternative material for a magnetic-based body fluid purification approach.
Collapse
Affiliation(s)
- Fatima Halouane
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|