1
|
Venezia V, Prieto C, Verrillo M, Grumi M, Silvestri B, Vitiello G, Luciani G, Lagaron JM. Electrospun films incorporating humic substances of application interest in sustainable active food packaging. Int J Biol Macromol 2024; 263:130210. [PMID: 38365144 DOI: 10.1016/j.ijbiomac.2024.130210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Sustainable active food packaging is essential to reduce the use of plastics, preserve food quality and minimize the environmental impact. Humic substances (HS) are rich in redox-active compounds, such as quinones, phenols, carboxyl, and hydroxyl moieties, making them functional additives for biopolymeric matrices, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Herein, composites made by incorporating different amounts of HS into PHBV were developed using the electrospinning technology and converted into homogeneous and continuous films by a thermal post-treatment to obtain a bioactive and biodegradable layer which could be part of a multilayer food packaging solution. The morphology, thermal, optical, mechanical, antioxidant and barrier properties of the resulting PHBV-based films have been evaluated, as well as the antifungal activity against Aspergillus flavus and Candida albicans and the antimicrobial properties against both Gram (+) and Gram (-) bacterial strains. HS show great potential as natural additives for biopolymer matrices, since they confer antioxidant, antimicrobial, and antifungal properties to the resulting materials. In addition, barrier, optical and mechanical properties highlighted that the obtained films are suitable for sustainable active packaging. Therefore, the electrospinning methodology is a promising and sustainable approach to give biowaste a new life through the development of multifunctional materials suitable in the active bio-packaging.
Collapse
Affiliation(s)
- Virginia Venezia
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy; DiSt, Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy.
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| | | | - Mattia Grumi
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| | - Giuseppe Vitiello
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy; CSGI-Center for Colloid and Surface Science, Via Della Lastruccia 3, 50019 Florence, Italy
| | - Giuseppina Luciani
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| |
Collapse
|
2
|
Qiu C, Wu Y, Guo Q, Shi Q, Zhang J, Meng Y, Xia F, Wang J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater Today Bio 2022; 17:100501. [DOI: 10.1016/j.mtbio.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
|
3
|
Conversion of Weathered Coal into High Value-Added Humic Acid by Magnetically Recoverable Fe3O4/LaNiO3 Nanocatalysts under Solid-Phase Grinding Conditions. Catalysts 2022. [DOI: 10.3390/catal12040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Fe3O4/LaNiO3 composite, synthesised with the sol-gel method, is considered to be an excellent nanocatalyst for the production of high value-added humic acids from oxidised weathered coal under solid phase milling process conditions. Under optimum process conditions (1% catalyst, 10% activator, 60 min grinding), 48.4% of the weathered coal can be oxidised to produce humic acid. The prepared Fe3O4/LaNiO3 catalyst was characterized by HRTEM, XRD, and XPS, etc. The heterojunction structure that can promote the electron transfer between the components of the composite material was formed with the recombination of Fe3O4 and LaNiO3. The activation of surface oxygen species and adsorbed oxygen could be enhanced with the help of electron transfer between components. Compared to the blank sample or the LaNiO3 catalyst alone, the molecular weight of the humic acid produced using the Fe3O4/LaNiO3 composite catalyst was significantly lower (maximum heavy mean molecular weight decreased from 59.7 kDa to 5.5 kDa) and the number of reactive groups in humic acid increased (to seven times that of the blank sample). Oxygen-free vacuum experiments indicated that O2 has an indispensable effect on its excellent catalytic performance in the Fe3O4/LaNiO3 system. In addition, Fe3O4/LaNiO3 could be used at least six times by simple magnetic separation. The development and preparation of perovskite composite catalysts provide a promising approach to the environmentally friendly development and application of weathered coal, as well as an effective method to resolve the associated environmental pollution.
Collapse
|
4
|
Venezia V, Pota G, Silvestri B, Vitiello G, Di Donato P, Landi G, Mollo V, Verrillo M, Cangemi S, Piccolo A, Luciani G. A study on structural evolution of hybrid humic Acids-SiO 2 nanostructures in pure water: Effects on physico-chemical and functional properties. CHEMOSPHERE 2022; 287:131985. [PMID: 34454229 DOI: 10.1016/j.chemosphere.2021.131985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Humic acids (HA) are considered a promising and inexpensive source for novel multifunctional materials for a huge range of applications. However, aggregation and degradation phenomena in aqueous environment prevent from their full exploitation. A valid strategy to address these issues relies on combining HA moieties at the molecular scale with an inorganic nanostructured component, leading to more stable hybrid nanomaterials with tunable functionalities. Indeed, chemical composition of HA can determine their interactions with the inorganic constituent in the hybrid nanoparticles and consequently affect their overall physico-chemical properties, including their stability and functional properties in aqueous environment. As a fundamental contribution to HA materials-based technology, this study aims at unveiling this aspect. To this purpose, SiO2 nanoparticles have been chosen as a model platform and three different HAs extracted from composted biomasses, manure (HA_Man), artichoke residues (HA_Art) and coffee grounds (HA_Cof), were employed to synthetize hybrid HA-SiO2 nanoparticles through in-situ sol-gel synthesis. Prepared samples were submitted to aging in water to assess their stability. Furthermore, antioxidant properties and physico-chemical properties of both as prepared and aged samples in aqueous environment were assessed through Scanning Electron Microscopy (SEM), N2 physisorption, Simultaneous Thermogravimetric (TGA) and Differential Scanning Calorimetric (DSC) Analysis, Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR) spectroscopies. The experimental results highlighted that hybrid HA-SiO2 nanostructures acted as dynamic systems which exhibit structural supramolecular reorganization during aging in aqueous environment with marked effects on physico-chemical and functional properties, including improved antioxidant activity. Obtained results enlighten a unique aspect of interactions between HA and inorganic nanoparticles that could be useful to predict their behavior in aqueous environment. Furthermore, the proposed approach traces a technological route for the exploitation of organic biowaste in the design of hybrid nanomaterials, providing a significant contribution to the development of waste to wealth strategies based on humic substances.
Collapse
Affiliation(s)
- Virginia Venezia
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", p.le V. Tecchio 80, 80125, Naples, Italy.
| | - Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", p.le V. Tecchio 80, 80125, Naples, Italy.
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", p.le V. Tecchio 80, 80125, Naples, Italy.
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", p.le V. Tecchio 80, 80125, Naples, Italy; CSGI, Center for Colloids and Surface Science, via della Lastruccia 3, 50019, Florence, Italy.
| | - Paola Di Donato
- Department of Science and Technology, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143, Naples, Italy.
| | - Gianluca Landi
- Institute of Sciences and Technologies for Sustainable Energy and Mobility-CNR, P.le V. Tecchio 80, 80125, Naples, Italy.
| | - Valentina Mollo
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia@CABHC, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
| | - Mariavittoria Verrillo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), University of Naples "Federico II", Via Università 100, 80055, Portici, Italy.
| | - Silvana Cangemi
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), University of Naples "Federico II", Via Università 100, 80055, Portici, Italy.
| | - Alessandro Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), University of Naples "Federico II", Via Università 100, 80055, Portici, Italy.
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", p.le V. Tecchio 80, 80125, Naples, Italy.
| |
Collapse
|
5
|
Vitiello G, Venezia V, Verrillo M, Nuzzo A, Houston J, Cimino S, D'Errico G, Aronne A, Paduano L, Piccolo A, Luciani G. Hybrid humic acid/titanium dioxide nanomaterials as highly effective antimicrobial agents against gram(-) pathogens and antibiotic contaminants in wastewater. ENVIRONMENTAL RESEARCH 2021; 193:110562. [PMID: 33271143 DOI: 10.1016/j.envres.2020.110562] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Humic acids (HAs) provide an important bio-source for redox-active materials. Their functional chemical groups are responsible for several properties, such as metal ion chelating activity, adsorption ability towards small molecules and antibacterial activity, through reactive oxygen species (ROS) generation. However, the poor selectivity and instability of HAs in solution hinder their application. A promising strategy for overcoming these disadvantages is conjugation with an inorganic phase, which leads to more stable hybrid nanomaterials with tuneable functionalities. In this study, we demonstrate that hybrid humic acid/titanium dioxide nanostructured materials that are prepared via a versatile in situ hydrothermal strategy display promising antibacterial activity against various pathogens and behave as selective sequestering agents of amoxicillin and tetracycline antibiotics from wastewater. A physicochemical investigation in which a combination of techniques were utilized, which included TEM, BET, 13C-CPMAS-NMR, EPR, DLS and SANS, shed light on the structure-property-function relationships of the nanohybrids. The proposed approach traces a technological path for the exploitation of organic biowaste in the design at the molecular scale of multifunctional nanomaterials, which is useful for addressing environmental and health problems that are related to water contamination by antibiotics and pathogens.
Collapse
Affiliation(s)
- Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale Tecchio 80, 80125, Naples, Italy; CSGI, Center for Colloid and Surface Science, Via Della Lastruccia 3, Sesto Fiorentino, FI, Italy.
| | - Virginia Venezia
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
| | - Mariavittoria Verrillo
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, 80055, Portici, Italy; Centro Interdipartimentale di Ricerca Sulla Risonanza Magnetica Nucleare per L'Ambiente, L'Agro-Alimentare Ed I Nuovi Materiali (CERMANU), Via Università 100, 80055, Portici, Italy
| | - Assunta Nuzzo
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, 80055, Portici, Italy; Centro Interdipartimentale di Ricerca Sulla Risonanza Magnetica Nucleare per L'Ambiente, L'Agro-Alimentare Ed I Nuovi Materiali (CERMANU), Via Università 100, 80055, Portici, Italy
| | - Judith Houston
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, Garching, 85747, Germany; European Spallation Source (ESS), Odarslovsvagen 113, 22592, Lund, Sweden
| | - Stefano Cimino
- IRC-Istituto di Ricerche Sulla Combustione, CNR - Consiglio Nazionale Delle Ricerche, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Gerardino D'Errico
- CSGI, Center for Colloid and Surface Science, Via Della Lastruccia 3, Sesto Fiorentino, FI, Italy; Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonio Aronne
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
| | - Luigi Paduano
- CSGI, Center for Colloid and Surface Science, Via Della Lastruccia 3, Sesto Fiorentino, FI, Italy; Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Alessandro Piccolo
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, 80055, Portici, Italy; Centro Interdipartimentale di Ricerca Sulla Risonanza Magnetica Nucleare per L'Ambiente, L'Agro-Alimentare Ed I Nuovi Materiali (CERMANU), Via Università 100, 80055, Portici, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
| |
Collapse
|
6
|
Zhou L, Yuan L, Zhao B, Li Y, Lin Z. Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions. PLoS One 2019; 14:e0217469. [PMID: 31150428 PMCID: PMC6544225 DOI: 10.1371/journal.pone.0217469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/13/2019] [Indexed: 11/18/2022] Open
Abstract
Humic acids derived from Chinese weathered coal were oxidized with hydrogen peroxide (H2O2) under various conditions, and their chemical composition and structure were examined. The raw material humic acids (HA) and oxidized humic acids (OHAs) were characterized by elemental analysis and ultraviolet visible (UV-Vis), Fourier transform infrared (FTIR), and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Our results show that aromatic functional groups accounted for more than 70% of the HA and OHAs and there were significant differences in their structures and compositions. Compared to the HA, the average H and N contents of the OHAs decreased by 5.15% and 2.52%, respectively, and the average O content of those of the OHAs increased by 5.30%. The hydrophobicity index (HI) of HA is higher than those of the OHAs. Importantly, in the hypothesis test between the properties and preparation conditions of humic acid using SPSS, the partial η2 of the temperature, hydrogen peroxide concentration, liquid-solid ratio, and time were 0.809, 0.771, 0.748 and 0.729, respectively; thus, among the preparation conditions, temperature is the most important factor affecting the humic acids properties.
Collapse
Affiliation(s)
- Liping Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Yuan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingqiang Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| | - Yanting Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhian Lin
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Volikov AB, Ponomarenko SA, Gutsche A, Nirschl H, Hatfield K, Perminova IV. Targeted design of water-based humic substances-silsesquioxane soft materials for nature-inspired remedial applications. RSC Adv 2016. [DOI: 10.1039/c6ra08636e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water-based humic substances-silsesquioxane (HS-SQ) soft materials are synthesized by hydrolysis of (3-aminopropyl-triethoxy)-silane in the HS solution, immobilized onto sand columns, and used for intercepting azo dye from water.
Collapse
Affiliation(s)
| | - Sergei A. Ponomarenko
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russia
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences
| | - Alexander Gutsche
- Institute for Mechanical Process Engineering and Mechanics
- Karlsruhe Institute of Technology (KIT)
- Karlsruhe
- Germany
| | - Hermann Nirschl
- Institute for Mechanical Process Engineering and Mechanics
- Karlsruhe Institute of Technology (KIT)
- Karlsruhe
- Germany
| | - Kirk Hatfield
- Engineering School for Sustainable Infrastructure and Environment
- University of Florida
- Gainesville
- USA
| | | |
Collapse
|