1
|
Zheng L, Song Q, Tan P, Wang ST, Liu XQ, Sun LB. Endowing Covalent Organic Frameworks with Photoresponsive Active Sites for Controllable Propylene Adsorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207291. [PMID: 36604978 DOI: 10.1002/smll.202207291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Photoresponsive covalent organic frameworks (PCOFs) have emerged as attractive candidates for adsorption, but it is challenging to construct PCOF adsorbents due to structural order loss of covalent organic frameworks (COFs) after introducing photoresponsive motifs and/or tedious steps of postmodification. Here, a facile strategy is developed, by dispersing photoresponsive metal-organic polyhedra (PMOP) into COFs, to endow COFs with photoresponsive adsorption sites. As a proof-of-concept study, a COF with pore size of 4.5 nm and PMOP with suitable molecular size (4.0 and 3.1 nm for trans and cis configuration, respectively) are selected to meet the requirements of proper accommodation space, good guest dispersion, and free isomerization. The structure of COF is well preserved after introducing PMOPs. Interestingly, the obtained photoresponsive host-guest composite (PHGC) adsorbents exhibit photomodulated adsorption capacity on propylene (C3 H6 ) and the change in adsorption capacity can reach up to 43.3% and is stable during multiple cycles. Density functional theory calculations reveal that visible-light irradiation drives the azobenzene motifs in PHGCs to the trans configuration and the adsorption sites are fully open and interact with C3 H6 . UV-light irradiation makes the azobenzene motifs transform to the cis configuration, leading to the shield of the adsorption sites and the consequent release of C3 H6 .
Collapse
Affiliation(s)
- Long Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qian Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Sheng-Tao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
2
|
Wang X, Liu H, Zhang J, Chen S. Covalent organic frameworks (COFs): a promising CO 2 capture candidate material. Polym Chem 2023. [DOI: 10.1039/d2py01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging kind of porous crystal material.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haorui Liu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinrui Zhang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
- Materials Science Institute, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
3
|
Madhu J, Madurai Ramakrishnan V, Santhanam A, Natarajan M, Palanisamy B, Velauthapillai D, Lan Chi NT, Pugazhendhi A. Comparison of three different structures of zeolites prepared by template-free hydrothermal method and its CO 2 adsorption properties. ENVIRONMENTAL RESEARCH 2022; 214:113949. [PMID: 35934143 DOI: 10.1016/j.envres.2022.113949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, zeolite sodalite SOD (50NaO2:Al2O3:5SiO2), zeolite LTA (2NaO2:Al2O3:1.926SiO2) and zeolite FAU (16NaO2:Al2O3:4SiO2) of different structures were synthesized successfully through simple conventional hydrothermal crystallization technique without using any template agent. Morphological analysis of three different types of zeolites revealed that the samples exhibit three different shapes such as the "Raspberry-like", "Dice" cube like and "Octahedral" shaped morphology respectively. The thermal stability was found to be about 4.8%, 14.6% and 20.5% for the synthesized zeolites SOD, LTA and FAU respectively. From the N2 adsorption-desorption studies, it was observed that adsorption types IV and I correspond to the synthesized samples. CO2 adsorption by the synthesized zeolite SOD, LTA and FAU were examined in the pressure range from 0 to 101.325 kPa at a constant temperature of 297.15 K. The highest adsorption capacity of 3.7 mmol/g was obtained for zeolite FAU. The synthesized zeolite was studied using a nonlinear regression curve fit to determine the adsorption isotherm model using Langmuir and Freundlich isotherm model. It has been found that the synthesized zeolites have a large electric field gradient due to which they can strongly adsorb quadrupole of CO2 molecules.
Collapse
Affiliation(s)
- Jayaprakash Madhu
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | | | - Agilan Santhanam
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | | | - Balraju Palanisamy
- Department of Physics, Coimbatore Institute of Technology, Coimbatore, 641 014, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, 5063, Bergen, Norway
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
4
|
Musielak E, Feliczak-Guzik A, Jaroniec M, Nowak I. Modification and Functionalization of Zeolites for Curcumin Uptake. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186316. [PMID: 36143628 PMCID: PMC9504848 DOI: 10.3390/ma15186316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/12/2023]
Abstract
This work shows that hierarchical zeolites are promising systems for the delivery of biologically relevant hydrophobic substances, such as curcumin. The validity of using piperine as a promoter of curcumin adsorption was also evaluated. The use of pure curcumin is not medically applicable due to its low bioavailability and poor water solubility. To improve the undesirable properties of curcumin, special carriers are used to overcome these shortcomings. Hierarchical zeolites possessing secondary mesoporosity are used as pharmaceutical carrier systems for encapsulating active substances with low water solubility. This porosity facilitates access of larger reagent molecules to the active sites of the material, preserving desirable adsorption properties, acidity, and crystallinity of zeolites. In this work, methods are proposed to synthesize hierarchical zeolites based on a commercial FAU-type zeolite. Studies on the application and adsorption kinetics of curcumin using commercial FAU-type zeolite and hierarchical zeolites based on commercial FAU-type zeolite are also included.
Collapse
Affiliation(s)
- Ewelina Musielak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Daghooghi-Mobarakeh H, Miner M, Wang L, Wang R, Phelan PE. Ultrasound-assisted regeneration of activated alumina/water adsorption pair for drying and dehumidification processes. ULTRASONICS 2022; 124:106769. [PMID: 35644098 DOI: 10.1016/j.ultras.2022.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Desorption processes are important part of all processes which involve utilization of solid adsorbents and are inherently energy-intensive. Here we investigate how those energy requirements can be reduced through the application of ultrasound for the activated alumina/water adsorption pair. To analyze the energy-saving characteristics of ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no ultrasound at the same total input power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, the highest desorption was achieved at the lowest ultrasonic-to-total power ratio corresponding to about 27% reduction in energy consumption. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Regarding regeneration temperature, application of ultrasound at higher ultrasonic-to-total power ratios of 0.4 and 0.5 reduces the regeneration temperature without taking a toll on desorption. Based on the variation of desorption dynamics with ultrasonic power and frequency, a novel ultrasound-enhanced desorption mechanism involving adsorbate surface energy is proposed and a relationship between acoustically induced strain and adsorbate surface energy is introduced. An analytical model that describes the desorption process is developed based on the experimental data. From this a novel efficiency metric is proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.
Collapse
Affiliation(s)
- Hooman Daghooghi-Mobarakeh
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Mark Miner
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-6305, USA
| | - Liping Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Robert Wang
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Patrick E Phelan
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ 85287-6106, USA.
| |
Collapse
|
6
|
Dong S, Xia J, Zhu H, Du X, Gu Y, Liu Q, Luo Y, Kong Q, Guo H, Li T, Traversa E. ZrO
2
/C Nanosphere Enables High‐Efficiency Nitrogen Reduction to Ammonia at Ambient Conditions. ChemCatChem 2022. [DOI: 10.1002/cctc.202200458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shuyue Dong
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731, Sichuan P. R. China
| | - Jiaojiao Xia
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731, Sichuan P. R. China
| | - Hexin Zhu
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731, Sichuan P. R. China
| | - Xiangning Du
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731, Sichuan P. R. China
| | - Yang Gu
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731, Sichuan P. R. China
| | - Qian Liu
- Institute for Advanced Study Chengdu University Chengdu 610106, Sichuan P. R. China
| | - Yonglan Luo
- Institute for Advanced Study Chengdu University Chengdu 610106, Sichuan P. R. China
| | - Qingquan Kong
- Institute for Advanced Study Chengdu University Chengdu 610106, Sichuan P. R. China
| | - Haoran Guo
- School of Chemical Sciences University of Chinese Academy of Sciences Shijingshan District Beijing 100049 P. R. China
| | - Tingshuai Li
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731, Sichuan P. R. China
| | - Enrico Traversa
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731, Sichuan P. R. China
| |
Collapse
|
7
|
Qian Z, Wei L, Mingyue W, Guansheng Q. Application of amine-modified porous materials for CO2 adsorption in mine confined spaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Abstract
Detailed analysis of textural properties, e.g., pore size and connectivity, of nanoporous materials is essential to identify correlations of these properties with the performance of gas storage, separation, and catalysis processes. The advances in developing nanoporous materials with uniform, tailor-made pore structures, including the introduction of hierarchical pore systems, offer huge potential for these applications. Within this context, major progress has been made in understanding the adsorption and phase behavior of confined fluids and consequently in physisorption characterization. This enables reliable pore size, volume, and network connectivity analysis using advanced, high-resolution experimental protocols coupled with advanced methods based on statistical mechanics, such as methods based on density functional theory and molecular simulation. If macro-pores are present, a combination of adsorption and mercury porosimetry can be useful. Hence, some important recent advances in understanding the mercury intrusion/extrusion mechanism are discussed. Additionally, some promising complementary techniques for characterization of porous materials immersed in a liquid phase are introduced.
Collapse
Affiliation(s)
- M Thommes
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany;
| | - C Schlumberger
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany;
| |
Collapse
|
9
|
Erdős M, Geerdink DF, Martin-Calvo A, Pidko EA, van den Broeke LJP, Calero S, Vlugt TJH, Moultos OA. In Silico Screening of Zeolites for High-Pressure Hydrogen Drying. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8383-8394. [PMID: 33566563 PMCID: PMC7908017 DOI: 10.1021/acsami.0c20892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
According to the ISO 14687-2:2019 standard, the water content of H2 fuel for transportation and stationary applications should not exceed 5 ppm (molar). To achieve this water content, zeolites can be used as a selective adsorbent for water. In this work, a computational screening study is carried out for the first time to identify potential zeolite frameworks for the drying of high-pressure H2 gas using Monte Carlo (MC) simulations. We show that the Si/Al ratio and adsorption selectivity have a negative correlation. 218 zeolites available in the database of the International Zeolite Association are considered in the screening. We computed the adsorption selectivity of each zeolite for water from the high-pressure H2 gas having water content relevant to vehicular applications and near saturation. It is shown that due to the formation of water clusters, the water content in the H2 gas has a significant effect on the selectivity of zeolites with a helium void fraction larger than 0.1. Under each operating condition, five most promising zeolites are identified based on the adsorption selectivity, the pore limiting diameter, and the volume of H2 gas that can be dried by 1 dm3 of zeolite. It is shown that at 12.3 ppm (molar) water content, structures with helium void fractions smaller than 0.07 are preferred. The structures identified for 478 ppm (molar) water content have helium void fractions larger than 0.26. The proposed zeolites can be used to dry 400-8000 times their own volume of H2 gas depending on the operating conditions. Our findings strongly indicate that zeolites are potential candidates for the drying of high-pressure H2 gas.
Collapse
Affiliation(s)
- Máté Erdős
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Daan F. Geerdink
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ana Martin-Calvo
- Department
of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km, 1, ES-41013 Seville, Spain
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering, Chemical Engineering Department, Faculty of Applied
Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Leo J. P. van den Broeke
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Sofia Calero
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
10
|
Chen LH, Sun MH, Wang Z, Yang W, Xie Z, Su BL. Hierarchically Structured Zeolites: From Design to Application. Chem Rev 2020; 120:11194-11294. [DOI: 10.1021/acs.chemrev.0c00016] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li-Hua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
| | - Ming-Hui Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Zhao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
| | - Zaiku Xie
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
- Clare Hall, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Wang S, Bai P, Wei Y, Liu W, Ren X, Bai J, Lu Z, Yan W, Yu J. Three-Dimensional-Printed Core-Shell Structured MFI-Type Zeolite Monoliths for Volatile Organic Compound Capture under Humid Conditions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38955-38963. [PMID: 31545028 DOI: 10.1021/acsami.9b13819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Crystalline aluminosilicate zeolites with high sorption capacity and low production cost have been recognized as a promising adsorbent for volatile organic compound (VOC) capture. However, the ubiquitous water vapor in the VOC streams may compete with VOCs during the practical separation process because of the hydrophilic property of aluminosilicate zeolites. Herein, a self-supporting core-shell structured MFI-type zeolite monolith was fabricated by 3D-printing aluminosilicate ZSM-5 zeolites as the core, followed by coating silicalite-1 zeolites as a hydrophobic shell via post-hydrothermal crystallization. Natural sepiolite nanofibers (SNFs) were employed as printing ink additives for reinforcing the mechanical stability of 3D-printed ZSM-5 monoliths. Colloidal silica was also introduced into the printing inks, affording continuous growth of silicalite-1 layers (with a thickness of ∼200 nm) over ZSM-5 crystals. Such core-shell structured MFI-type zeolite monoliths exhibited superior dynamic adsorption performance for toluene at 298 K under humid conditions (relative humidity: 50%), with a saturated adsorption capacity of 44.3 mg/g. This work provides a facile strategy for designing self-supporting zeolite monoliths with core-shell architectures for adsorption/separation and other advanced applications.
Collapse
Affiliation(s)
| | | | | | - Wei Liu
- School of Mechanical and Aerospace Engineering , Jilin University , Changchun 130025 , China
| | | | | | | | | | | |
Collapse
|
12
|
Ali N, Babar AA, Zhang Y, Iqbal N, Wang X, Yu J, Ding B. Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture. J Colloid Interface Sci 2019; 560:379-387. [PMID: 31645270 DOI: 10.1016/j.jcis.2019.10.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/21/2019] [Accepted: 10/10/2019] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Carbon based nanofibrous materials are considered to be promising sorbents for the CO2 capture and storage. However, the precise control of porous structure with flexibility still remains a challenging task. In this research, we report a simple strategy to develop tin oxide (SnO2) embedded, flexible and highly porous core-shell structured carbon nanofibers (CNFs) derived from polyacrylonitrile (PAN)/polyvinylidene fluoride (PVDF) core-shell nanofibers. EXPERIMENT PAN/PVDF core-shell solutions were electrospun using co-axial electrospinning process. The as spun PAN core, and PVDF shell, with an appropriate amount of SnO2, fibers were stabilized followed by carbonization to develop SnO2 embedded highly porous and flexible core-shell structured CNFs. FINDINGS The optimized CNFs membrane shows a prominent CO2 capture capacity of 2.6 mmol g-1 at room temperature, excellent CO2 selectivity than N2, and a remarkable cyclic stability. After 20 adsorption-desorption cycles, the CO2 capture capacity retains >95% of the preliminary value showing the long-term stability and practical worth of the final product. The loading of SnO2 nanoparticles in the carbon matrix not only enhanced the thermal stability of the precursor nanofibers, their surface characteristics, and porous structure to capture CO2 molecules, but also improves the flexibility of the CNFs by serving as a plasticizer for single-fiber-crack connection. Meaningfully, the flexible SnO2 embedded core-shell CNFs with excellent structural stability can prevail the limitations of annihilation and collapse of structures for conventional adsorbents, which makes them strongly useful and applicable. This research introduces a new route to produce highly porous and flexible materials as solid adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Nadir Ali
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; Textile Engineering Department, Mehran University of Engineering & Technology, Jamshoro 76060, Pakistan
| | - Aijaz Ahmed Babar
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Textile Engineering Department, Mehran University of Engineering & Technology, Jamshoro 76060, Pakistan
| | - Yufei Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Nousheen Iqbal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| |
Collapse
|
13
|
Wang S, Bai P, Sun M, Liu W, Li D, Wu W, Yan W, Shang J, Yu J. Fabricating Mechanically Robust Binder-Free Structured Zeolites by 3D Printing Coupled with Zeolite Soldering: A Superior Configuration for CO 2 Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901317. [PMID: 31508293 PMCID: PMC6724348 DOI: 10.1002/advs.201901317] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/11/2019] [Indexed: 05/05/2023]
Abstract
3D-printing technology is a promising approach for rapidly and precisely manufacturing zeolite adsorbents with desirable configurations. However, the trade-off among mechanical stability, adsorption capacity, and diffusion kinetics remains an elusive challenge for the practical application of 3D-printed zeolites. Herein, a facile "3D printing and zeolite soldering" strategy is developed to construct mechanically robust binder-free zeolite monoliths (ZM-BF) with hierarchical structures, which can act as a superior configuration for CO2 capture. Halloysite nanotubes are employed as printing ink additives, which serve as both reinforcing materials and precursor materials for integrating ZM-BF by ultrastrong interfacial "zeolite-bonds" subjected to hydrothermal treatment. ZM-BF exhibits outstanding mechanical properties with robust compressive strength up to 5.24 MPa, higher than most of the reported structured zeolites with binders. The equilibrium CO2 uptake of ZM-BF reaches up to 5.58 mmol g-1 (298 K, 1 bar), which is the highest among all reported 3D-printed CO2 adsorbents. Strikingly, the dynamic adsorption breakthrough tests demonstrate the superiority of ZM-BF over commercial benchmark zeolites for flue gas purification and natural gas and biogas upgrading. This work introduces a facile strategy for designing and fabricating high-performance hierarchically structured zeolite adsorbents and even catalysts for practical applications.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
| | - Pu Bai
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
| | - Mingzhe Sun
- School of Energy and EnvironmentCity University of Hong KongTat Chee AveKowloonHong KongChina
| | - Wei Liu
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchun130025China
| | - Dongdong Li
- Key Laboratory of Automobile Materials of MOEDepartment of Materials Science and EngineeringJilin UniversityChangchun130012China
| | - Wenzheng Wu
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchun130025China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
| | - Jin Shang
- School of Energy and EnvironmentCity University of Hong KongTat Chee AveKowloonHong KongChina
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
- International Center of Future ScienceJilin UniversityChangchun130012China
| |
Collapse
|
14
|
Polysiloxane microspheres encapsulated in carbon allotropes: A promising material for supercapacitor and carbon dioxide capture. J Colloid Interface Sci 2019; 542:91-101. [DOI: 10.1016/j.jcis.2019.01.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/21/2023]
|
15
|
Zhang Y, Zhang Y, Wang X, Yu J, Ding B. Ultrahigh Metal-Organic Framework Loading and Flexible Nanofibrous Membranes for Efficient CO 2 Capture with Long-Term, Ultrastable Recyclability. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34802-34810. [PMID: 30211528 DOI: 10.1021/acsami.8b14197] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the global transition to a sustainable low-carbon economy, CO2 capture and storage technology plays a key role in reducing emissions. Metal-organic frameworks (MOFs) are crystalline materials with ultrahigh porosity, tunable pore size, and rich functionalities, holding the promise for CO2 capture. However, the intrinsic fragility and depressed processability of MOF crystals make the fabrication of the flexible MOF nanofibrous membrane (NFM) rather challenging. Herein, we demonstrate an effective strategy for the versatile preparation of self-supported and flexible HKUST-1 NFM with ultrahigh HKUST-1 loading (up to 82 wt %) and stable and uniform HKUST-1 growth through the combination of electrospinning, multistep seeded growth, and activation process. The loading rate of MOF is the highest level among the reported analogues. Significantly, the HKUST-1 NFM exhibits a prominent CO2 adsorption capacity of 3.9 mmol g-1, good CO2/N2 selectivity, and remarkable recyclability. The CO2 capacity retains ∼95% (3.7 mmol g-1) of the initial value after 100 adsorption-desorption cycles, indicating that the HKUST-1 NFM has long-term and ultrastable recyclability and a significant practical value. Thus, the low-cost and scalable production pathway is able to convert MOF particles into self-supported and flexible NFMs, and thereby, they are better applied to the efficient postcombustion CO2 capture.
Collapse
Affiliation(s)
- Yuge Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yufei Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
16
|
Besser B, Häuser L, Butzke L, Kroll S, Rezwan K. Straightforward Processing Route for the Fabrication of Robust Hierarchical Zeolite Structures. ACS OMEGA 2017; 2:6337-6348. [PMID: 31457240 PMCID: PMC6645045 DOI: 10.1021/acsomega.7b00972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/29/2017] [Indexed: 05/22/2023]
Abstract
Strong hierarchical porous zeolite structures are prepared by a sol-gel method using freeze gelation. Instead of conventional binders in powder form, such as bentonite or kaolin, it has been proven that using a freeze gelation method based on a colloidal silica sol is a more straightforward and easier-to-use-approach in fabricating highly mechanically stable zeolite monoliths. The resulting zeolite slurries possess superior rheological properties (not being pseudoplastic) and show low viscosities. This low viscosity of the slurry enables an increase in the solid content without compromising the extraordinary good flow behavior for casting applications. Additionally, in comparison to conventional powdery binders, zeolite samples prepared by using a colloidal silica sol exhibit a significantly higher mechanical strength. This mechanical strength can be further improved by either increasing the zeolite content or increasing the silica to zeolite ratio. Increasing the zeolite content leads to an increased volumetric adsorption capacity for CO2 as the test gas, resulting from the increased amount of zeolite particles per unit volume. In addition, a higher solid content of the zeolite monoliths leads to higher compression strengths, while showing the same elastic deformation and brittle failure characteristics. In turn, increasing the silica to zeolite ratio does not affect the volumetric adsorption capacity for CO2. Nevertheless, higher silica contents lead to a significant increase in the elastic deformation and absorbed work until failure. Therefore, the proposed processing route based on freeze gelation presents an easy and unique tool to tune the mechanical and gas adsorptive properties of hierarchically structured zeolite monoliths, according to the application requirements.
Collapse
Affiliation(s)
- Benjamin Besser
- Advanced
Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Luca Häuser
- Advanced
Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Lukas Butzke
- Advanced
Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Stephen Kroll
- Advanced
Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
- Center
for Materials and Processes (MAPEX), University
of Bremen, Bibliothekstraße
1, 28359 Bremen, Germany
- E-mail: . Phone: +49 421 218 64933. Fax: +49 421 218
64932 (S.K.)
| | - Kurosch Rezwan
- Advanced
Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
- Center
for Materials and Processes (MAPEX), University
of Bremen, Bibliothekstraße
1, 28359 Bremen, Germany
| |
Collapse
|
17
|
Facile synthesis of hierarchical porous catalysts for enhanced conversion of fructose to 5-hydroxymethylfurfural. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Guo H, Feng J, Zhao Y, Wang S, Ma X. Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO 2 adsorption. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts 2017. [DOI: 10.3390/catal7020062] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Besser B, Ahmed A, Baune M, Kroll S, Thöming J, Rezwan K. Applying Alkyl-Chain Surface Functionalizations in Mesoporous Inorganic Structures: Their Impact on Gas Flow and Selectivity Depending on Temperature. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26938-26947. [PMID: 27636163 DOI: 10.1021/acsami.6b09174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Porous inorganic capillary membranes are prepared to serve as model structures for the experimental investigation of the gas transport in functionalized mesopores. The porous structures possess a mean pore diameter of 23 nm which is slightly reduced to 20 nm after immobilizing C16-alkyl chains on the surface. Gas permeation measurements are performed at temperatures ranging from 0 to 80 °C using Ar, N2, and CO2. Nonfunctionalized structures feature a gas transport according to Knudsen diffusion with regard to gas flow and selectivity. After C16-functionalization, the gas flow is reduced by a factor of 10, and the ideal selectivities deviate from the Knudsen theory. CO2 adsorption measurements show a decrease in total amount of adsorbed gas and isosteric heat of adsorption. It is hypothesized that the immobilized C16-chains sterically influence the gas transport behavior without a contribution from adsorption effects. The reduced gas flow derives from an additional surface resistance caused by the C16-chains spacially limiting the adsorption and desorption directions for gas molecules propagating through the structure, resulting in longer diffusion paths. In agreement, the gas flow is found to correlate with the molecular diameter of the gas species (CO2 < Ar < N2) increasing the resistance for larger molecules. This affects the ideal selectivities with the relation [Formula: see text]. The influence on selectivity increases with increasing temperature which leads to the conclusion that the temperature induced movement of the C16-chains is responsible for the stronger interaction between gas molecules and surface functional groups.
Collapse
Affiliation(s)
- Benjamin Besser
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Atiq Ahmed
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Michael Baune
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen , Leobener Strasse 1, 28359 Bremen, Germany
| | - Stephen Kroll
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
- Centre for Materials and Processes (MAPEX), University of Bremen , Bibliothekstraße 1, 28359 Bremen, Germany
| | - Jorg Thöming
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen , Leobener Strasse 1, 28359 Bremen, Germany
- Centre for Materials and Processes (MAPEX), University of Bremen , Bibliothekstraße 1, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen , Am Biologischen Garten 2, 28359 Bremen, Germany
- Centre for Materials and Processes (MAPEX), University of Bremen , Bibliothekstraße 1, 28359 Bremen, Germany
| |
Collapse
|