1
|
Muthukutty B, Sathish Kumar P, Lee D, Lee S. Multichannel Carbon Nanofibers: Pioneering the Future of Energy Storage. ACS NANO 2024; 18:27287-27316. [PMID: 39324479 DOI: 10.1021/acsnano.4c11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Multichannel carbon nanofibers (MCNFs), characterized by complex hierarchical structures comprising multiple channels or compartments, have attracted considerable attention owing to their high porosity, large surface area, good directionality, tunable composition, and low density. In recent years, electrospinning (ESP) has emerged as a popular synthetic technique for producing MCNFs with exceptional properties from various polymer blends, driven by phase separation between polymers. These interactions, including van der Waals forces, covalent bonding, and ionic interactions, are crucial for MCNF production. Over time, the applications of MCNFs have expanded, making them one of the most intriguing topics in material research. MCNFs with tailored porous channels, controllable dimensions, confined spaces, high surface areas, designed architectures, and easy electrolyte access to active walls are considered optimal for electrochemical energy storage (EES) technologies. This review provides an exhaustive overview of the working principle, synthesis methods, and structural properties of MCNFs, and examines their advantages, limitations, and potential for producing multichannel architectures. Furthermore, this review explores the relationship between the composition of MCNF electrode materials for EES devices (supercapacitors and batteries) and their electrochemical performance. This review also addresses future directions and challenges in the development and utilization of MCNFs and provides insights into potential research avenues for advancing this exciting field.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ponnaiah Sathish Kumar
- Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711873, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Sungwon Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea
| |
Collapse
|
2
|
Caglayan MO, Şahin S, Üstündağ Z. An Overview of Aptamer-Based Sensor Platforms for the Detection of Bisphenol-A. Crit Rev Anal Chem 2024; 54:1320-1341. [PMID: 36001397 DOI: 10.1080/10408347.2022.2113359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Endocrine disruptive compounds are natural or anthropogenic environmental micropollutants that alter the function of the endocrine system ultimately damaging the metabolism. Bisphenol A (BPA) is the most common of these pollutants and it is often used in epoxy coatings and polycarbonates as a plasticizer. Therefore, monitoring BPA levels in different environments is very important and challenging. In recent years, an increasing number of BPA detection methods have been proposed. This article presents a critical review of aptamer-based electrochemical, fluorescence-based, colorimetric, and several other BPA detection platforms published in the last decade. Furthermore, a statistical evaluation has been made using principle component analysis showing analytical performance parameters do not create very different clusters. Comparisons to other BPA detection methods are also presented so that the reader has an overall literature overview.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
3
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
4
|
Ouyang X, Feng C, Zhu X, Liao Y, Zhou Z, Fan X, Zhang Z, Chen L, Tang L. 3D printed bionic self-powered sensing device based on fern-shaped nitrogen doped BiVO4 photoanode with enriched oxygen vacancies. Biosens Bioelectron 2022; 220:114817. [DOI: 10.1016/j.bios.2022.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
5
|
Kundu A, Shetti NP, Basu S, Mondal K, Sharma A, Aminabhavi TM. Versatile Carbon Nanofiber-Based Sensors. ACS APPLIED BIO MATERIALS 2022; 5:4086-4102. [PMID: 36040854 DOI: 10.1021/acsabm.2c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon nanofibers (CNFs) display colossal potential in different fields like energy, catalysis, biomedicine, sensing, and environmental science. CNFs have revealed extensive uses in various sensing platforms due to their distinctive structure, properties, function, and accessible surface functionalization capabilities. This review presents insight into various fabrication methods for CNFs like electrospinning, chemical vapor deposition, and template methods with merits and demerits of each technique. Also, we give a brief overview of CNF functionalization. Their unique physical and chemical properties make them promising candidates for the sensor applications. This review offers detailed discussion of sensing applications (strain sensor, biosensor, small molecule detection, food preservative detection, toxicity biomarker detection, and gas sensor). Various sensing applications of CNF like human motion monitoring and energy storage and conversion are discussed in brief. The challenges and obstacles associated with CNFs for futuristic applications are discussed. This review will be helpful for readers to understand the different fabrication methods and explore various applications of the versatile CNFs.
Collapse
Affiliation(s)
- Aayushi Kundu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty─TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580 031, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Panjab 140413, India
| |
Collapse
|
6
|
Pebdeni AB, Hosseini M, Barkhordari A. Smart fluorescence aptasensor using nanofiber functionalized with carbon quantum dot for specific detection of pathogenic bacteria in the wound. Talanta 2022; 246:123454. [DOI: 10.1016/j.talanta.2022.123454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/23/2023]
|
7
|
Şahin S, Üstündağ Z, Caglayan MO. Spectroscopic ellipsometry-based aptasensor platform for bisphenol a detection. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Electrospinning-Based Carbon Nanofibers for Energy and Sensor Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carbon nanofibers (CNFs) are the most basic structure of one-dimensional nanometer-scale sp2 carbon. The CNF’s structure provides fast current transfer and a large surface area and it is widely used as an energy storage material and as a sensor electrode material. Electrospinning is a well-known technology that enables the production of a large number of uniform nanofibers and it is the easiest way to mass-produce CNFs of a specific diameter. In this review article, we introduce an electrospinning method capable of manufacturing CNFs using a polymer precursor, thereafter, we present the technologies for manufacturing CNFs that have a porous and hollow structure by modifying existing electrospinning technology. This paper also discusses research on the applications of CNFs with various structures that have recently been developed for sensor electrode materials and energy storage materials.
Collapse
|
9
|
Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrospun nanofibers have become the most promising building blocks for future high-performance electronic devices because of the advantages of larger specific surface area, higher porosity, more flexibility, and stronger mechanical strength over conventional film-based materials. Moreover, along with the properties of ease of fabrication and cost-effectiveness, a broad range of applications based on nanomaterials by electrospinning have sprung up. In this review, we aim to summarize basic principles, influence factors, and advanced methods of electrospinning to produce hundreds of nanofibers with different structures and arrangements. In addition, electrospun nanofiber based electronics composed of both two-terminal and three-terminal devices and their practical applications are discussed in the fields of sensing, storage, and computing, which give rise to the further integration to realize a comprehensive and brain-like system. Last but not least, the emulation of biological synapses through artificial synaptic transistors and additionally optoelectronics in recent years are included as an important step toward the construction of large-scale, multifunctional systems.
Collapse
|
10
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Tsekeli TR, Tshwenya L, Sebokolodi TI, Ndlovu T, Arotiba OA. An Electrochemical Aptamer Biosensor for Bisphenol A on a Carbon Nanofibre‐silver Nanoparticle Immobilisation Platform. ELECTROANAL 2021. [DOI: 10.1002/elan.202100167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tebogo R. Tsekeli
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | - Luthando Tshwenya
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | | | - Thabile Ndlovu
- Department of Chemistry University of Eswatini Kwaluseni M201 Eswatini
| | - Omotayo A. Arotiba
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
- Centre for Nanomaterials Science Research University of Johannesburg Johannesburg 2028 South Africa
| |
Collapse
|
12
|
Abdo GG, Zagho MM, Al Moustafa AE, Khalil A, Elzatahry AA. A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers. J Biomed Mater Res B Appl Biomater 2021; 109:1893-1908. [PMID: 33749098 DOI: 10.1002/jbm.b.34828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023]
Abstract
Since the discovery and fabrication of carbon nanofibers (CNFs) over a decade ago, scientists foster to discover novel myriad potential applications for this material in both biomedicine and industry. The unique economic viability, mechanical, electrical, optical, thermal, and structural properties of CNFs led to their rapid emergence. CNFs become an artificial intelligence platform for different uses, including a wide range of biomedical applications. Furthermore, CNFs have exceptionally large surface areas that make them flexible for tailoring and functionalization on demand. This review highlights the recent progress and achievements of CNFs in a wide range of biomedical fields, including cancer therapy, biosensing, tissue engineering, and wound dressing. Besides the synthetic techniques of CNFs, their potential toxicity and limitations, as biomaterials in real clinical settings, will be presented. This review discusses CNF's future investigations in other biomedical fields, including gene delivery and bioimaging and CNFs risk assessment.
Collapse
Affiliation(s)
- Ghada G Abdo
- College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Moustafa M Zagho
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi, 39406, USA
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar.,Biomedical Research Centre, Qatar University, Doha, 2713, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
13
|
Liu LS, Wang F, Ge Y, Lo PK. Recent Developments in Aptasensors for Diagnostic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9329-9358. [PMID: 33155468 DOI: 10.1021/acsami.0c14788] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aptamers are exciting smart molecular probes for specific recognition of disease biomarkers. A number of strategies have been developed to convert target-aptamer binding into physically detectable signals. Since the aptamer sequence was first discovered, a large variety of aptamer-based biosensors have been developed, with considerable attention paid to their potential applications in clinical diagnostics. So far, a variety of techniques in combination with a wide range of functional nanomaterials have been used for the design of aptasensors to further improve the sensitivity and detection limit of target determination. In this paper, the advantages of aptamers over traditional antibodies as the molecular recognition components in biosensors for high-throughput screening target molecules are highlighted. Aptamer-target pairing configurations are predominantly single- or dual-site binding; the design of recognition modes of each aptamer-target pairing configuration is described. Furthermore, signal transduction strategies including optical, electrical, mechanical, and mass-sensitive modes are clearly explained together with examples. Finally, we summarize the recent progress in the development of aptamer-based biosensors for clinical diagnosis, including detection of cancer and disease biomarkers and in vivo molecular imaging. We then conclude with a discussion on the advanced development and challenges of aptasensors.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yonghe Ge
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
14
|
Application of Aptamer-based Biosensor in Bisphenol A Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60077-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Ebrahimi Vafaye S, Rahman A, Safaeian S, Adabi M. An electrochemical aptasensor based on electrospun carbon nanofiber mat and gold nanoparticles for the sensitive detection of Penicillin in milk. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00684-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
17
|
Rajabnejad SH, Badibostan H, Verdian A, Karimi GR, Fooladi E, Feizy J. Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Kim SG, Jun J, Kim YK, Kim J, Lee JS, Jang J. Facile Synthesis of Co 3O 4-Incorporated Multichannel Carbon Nanofibers for Electrochemical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20613-20622. [PMID: 32293170 DOI: 10.1021/acsami.0c06254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Considering their superior electrochemical performances, extensive studies have been carried out on composite nanomaterials based on porous carbon nanofibers. However, the introduction of inorganic components into a porous structure is complex and has a low yield. In this study, we propose a simple synthesis of cobalt-oxide-incorporated multichannel carbon nanofibers (P-Co-MCNFs) as electrode materials for electrochemical applications. The cobalt oxide component is directly formed in the carbon structure by a simple oxygen plasma exposure of the phase-separated polymer nanofibers. P-Co-MCNF displays high specific capacitance (815 F g-1 at 2.0 A g-1), rate capability (821 F g-1 at 1 A g-1 and 786 F g-1 at 20 A g-1), and cycle stability (92.1% for 5000 cycles) as a supercapacitor electrode. Moreover, excellent sensitivity (down to 1 nM) and selectivity to the glucose molecule is demonstrated for nonenzyme sensor applications.
Collapse
Affiliation(s)
- Sung Gun Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaemoon Jun
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- LG Chem R&D Campus Daejeon, 188, Munji-ro, Yuseong-gu, Daejeon 34122, Republic of Korea
| | - Yun Ki Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungwon Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
A layered nanocomposite of laccase, chitosan, and Fe3O4 nanoparticles-reduced graphene oxide for the nanomolar electrochemical detection of bisphenol A. Mikrochim Acta 2020; 187:262. [DOI: 10.1007/s00604-020-4223-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/07/2020] [Indexed: 12/20/2022]
|
20
|
Yang T, Zhan L, Huang CZ. Recent insights into functionalized electrospun nanofibrous films for chemo-/bio-sensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115813] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules 2020; 25:molecules25030680. [PMID: 32033448 PMCID: PMC7036789 DOI: 10.3390/molecules25030680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers, in sensing technology, are famous for their role as receptors in versatile applications due to their high specificity and selectivity to a wide range of targets including proteins, small molecules, oligonucleotides, metal ions, viruses, and cells. The outburst of field-effect transistors provides a label-free detection and ultra-sensitive technique with significantly improved results in terms of detection of substances. However, their combination in this field is challenged by several factors. Recent advances in the discovery of aptamers and studies of Field-Effect Transistor (FET) aptasensors overcome these limitations and potentially expand the dominance of aptamers in the biosensor market.
Collapse
|
22
|
Kim MS, Cho KH, Park KH, Jang J, Hahn JS. Activation of Haa1 and War1 transcription factors by differential binding of weak acid anions in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 47:1211-1224. [PMID: 30476185 PMCID: PMC6379682 DOI: 10.1093/nar/gky1188] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023] Open
Abstract
In Saccharomyces cerevisiae, Haa1 and War1 transcription factors are involved in cellular adaptation against hydrophilic weak acids and lipophilic weak acids, respectively. However, it is unclear how these transcription factors are differentially activated depending on the identity of the weak acid. Using a field-effect transistor (FET)-type biosensor based on carbon nanofibers, in the present study we demonstrate that Haa1 and War1 directly bind to various weak acid anions with different affinities. Haa1 is most sensitive to acetate, followed by lactate, whereas War1 is most sensitive to benzoate, followed by sorbate, reflecting their differential activation during weak acid stresses. We show that DNA binding by Haa1 is induced in the presence of acetic acid and that the N-terminal Zn-binding domain is essential for this activity. Acetate binds to the N-terminal 150-residue region, and the transcriptional activation domain is located between amino acid residues 230 and 483. Our data suggest that acetate binding converts an inactive Haa1 to the active form, which is capable of DNA binding and transcriptional activation.
Collapse
Affiliation(s)
- Myung Sup Kim
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung Hee Cho
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
23
|
Hao Z, Pan Y, Huang C, Wang Z, Zhao X. Sensitive detection of lung cancer biomarkers using an aptameric graphene-based nanosensor with enhanced stability. Biomed Microdevices 2019; 21:65. [PMID: 31273548 DOI: 10.1007/s10544-019-0409-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present an electrolyte-gated graphene field effect transistor (GFET) nanosensor using aptamer for rapid, highly sensitive and specific detection of a lung cancer biomarker interleukin-6 (IL-6) with enhanced stability. The negatively charged aptamer folds into a compact secondary conformation upon binding with IL-6, thus altering the carrier concentration of graphene and yielding a detectable change in the drain-source current Ids. Aptamer has smaller size than other receptors (e.g. antibodies), making it possible to bring the charged IL-6 more closely to the graphene surface upon affinity binding, thereby enhancing the sensitivity of the detection. Thanks to the higher stability of aptamer over antibodies, which degrade easily with increasing storage time, consistent sensing performance was obtained by our nanosensor over extended-time (>24 h) storage at 25 °C. Additionally, due to the GFET-enabled rapid transduction of the affinity recognition to IL-6, detection of IL-6 can be achieved in several minutes (<10 min). Experimental results indicate that this nanosensor can rapidly and specifically respond to the change in IL-6 levels with high consistency after extended-time storage and a detection limit (DL) down to 139 fM. Therefore, our nanosensor holds great potential for lung cancer diagnosis at its early stage.
Collapse
Affiliation(s)
- Zhuang Hao
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yunlu Pan
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
| | - Cong Huang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Ziran Wang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Xuezeng Zhao
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| |
Collapse
|
24
|
Reduced Carboxylate Graphene Oxide based Field Effect Transistor as Pb 2+ Aptamer Sensor. MICROMACHINES 2019; 10:mi10060388. [PMID: 31212592 PMCID: PMC6630652 DOI: 10.3390/mi10060388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Aptamer functionalized graphene field effect transistor (apta-GFET) is a versatile bio-sensing platform. However, the chemical inertness of graphene is still an obstacle for its large-scale applications and commercialization. In this work, reduced carboxyl-graphene oxide (rGO-COOH) is studied as a self-activated channel material in the screen-printed apta-GFETs for the first time. Examinations are carefully executed using lead-specific-aptamer as a proof-of-concept to demonstrate its functions in accommodating aptamer bio-probes and promoting the sensing reaction. The graphene-state, few-layer nano-structure, plenty of oxygen-containing groups and enhanced LSA immobilization of the rGO-COOH channel film are evidenced by X-ray photoelectron spectroscopy, Raman spectrum, UV-visible absorbance, atomic force microscopy and scanning electron microscope. Based on these characterizations, as well as a site-binding model based on solution-gated field effect transistor (SgFET) working principle, theoretical deductions for rGO-COOH enhanced apta-GFETs’ response are provided. Furthermore, detections for disturbing ions and real samples demonstrate the rGO-COOH channeled apta-GFET has a good specificity, a limit-of-detection of 0.001 ppb, and is in agreement with the conventional inductively coupled plasma mass spectrometry method. In conclusion, the careful examinations demonstrate rGO-COOH is a promising candidate as a self-activated channel material because of its merits of being independent of linking reagents, free from polymer residue and compatible with rapidly developed print-electronic technology.
Collapse
|
25
|
Nie W, Mao Q, Ding Y, Hu Y, Tang H. Highly efficient catalysis of chalcopyrite with surface bonded ferrous species for activation of peroxymonosulfate toward degradation of bisphenol A: A mechanism study. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:59-68. [PMID: 30339933 DOI: 10.1016/j.jhazmat.2018.09.078] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Chalcopyrite nanoparticles (CuFeS2 NPs) with abundant surface bonded ferrous were successfully prepared, characterized and used as a catalyst for peroxymonosulfate (PMS) activation and BPA degradation. The effect of reaction parameters such as initial pH, catalyst load, PMS concentration, initial BPA concentration and reaction temperature on BPA degradation in CuFeS2-PMS system was systematically investigated. As a bimetallic sulfide, CuFeS2 exhibits ultra-high activity for PMS activation compared with Cu2S, FeS2, CuFeO2 and Co3O4. It was found that by co-use of 0.1 g L-1 CuFeS2 and 0.3 mmol L-1 PMS, 20 mg L-1 of BPA was almost completely degraded (99.7%) and reached a mineralization rate of 75% within 20 min. The highly catalytic activity of CuFeS2 is closely related to two aspects: one is that S2- in the catalysts promotes the cycling of Fe3+/Fe2+ and Cu2+/Cu+ cycles on the surface, and the other is the synergistic effect of Fe3+/Fe2+ and Cu2+/Cu+ cycles in the PMS activation. These interesting findings shed some new insight on the development of metal sulfides for the oxidative treatment of organic contaminants.
Collapse
Affiliation(s)
- Wenshan Nie
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Qihang Mao
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yaobin Ding
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Yue Hu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Heqing Tang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| |
Collapse
|
26
|
Tavakkoli N, Soltani N, Mohammadi F. A nanoporous gold-based electrochemical aptasensor for sensitive detection of cocaine. RSC Adv 2019; 9:14296-14301. [PMID: 35519350 PMCID: PMC9066177 DOI: 10.1039/c9ra01292c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
The increasing application of aptamers in bioassays has triggered a lot of research interest for development of highly sensitive and selective sensing platforms. Herein, we report on the design of a sensitive cocaine biosensor by immobilizing the 5′-disulfide-functionalized end of an aptamer sequence on a nanoporous gold (NPG) electrode followed by the conjugation of its 3′-amino-functionalized end to 2,5-dihydroxybenzoic acid (DHBA) as the redox probe. In the presence of cocaine, the aptamer undergoes a conformational change from an open unfolded state to a closed conformation, which reduces the distance between DHBA and the electrode surface, resulting in the enhanced electron-transfer efficiency. Using square wave voltammetric method and under the optimal conditions, the cocaine aptasensor presented two linear responses in the concentration ranges between 0.05–1 and 1–35 μM, with an excellent detection limit of 21 nM. The proposed aptasensor provides a simple and low-cost method for cocaine detection with good reproducibility and accuracy. Furthermore, it could be regarded as a general model to investigate the unique function of aptamer-functionalized nanostructured electrodes to stablish highly advanced electrochemical biosensors for various target analytes of diagnostic importance. The increasing application of aptamers in bioassays has triggered a lot of research interest for development of highly sensitive and selective sensing platforms.![]()
Collapse
|
27
|
Akki SU, Werth CJ. Critical Review: DNA Aptasensors, Are They Ready for Monitoring Organic Pollutants in Natural and Treated Water Sources? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8989-9007. [PMID: 30016080 DOI: 10.1021/acs.est.8b00558] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
There is a growing need to monitor anthropogenic organic contaminants detected in water sources. DNA aptamers are synthetic single-stranded oligonucleotides, selected to bind to target contaminants with favorable selectivity and sensitivity. These aptamers can be functionalized and are used with a variety of sensing platforms to develop sensors, or aptasensors. In this critical review, we (1) identify the state-of-the-art in DNA aptamer selection, (2) evaluate target and aptamer properties that make for sensitive and selective binding and sensing, (3) determine strengths and weaknesses of alternative sensing platforms, and (4) assess the potential for aptasensors to quantify environmentally relevant concentrations of organic contaminants in water. Among a suite of target and aptamer properties, binding affinity is either directly (e.g., organic carbon partition coefficient) or inversely (e.g., polar surface area) correlated to properties that indicate greater target hydrophobicity results in the strongest binding aptamers, and binding affinity is correlated to aptasensor limits of detection. Electrochemical-based aptasensors show the greatest sensitivity, which is similar to ELISA-based methods. Only a handful of aptasensors can detect organic pollutants at environmentally relevant concentrations, and interference from structurally similar analogs commonly present in natural waters is a yet-to-be overcome challenge. These findings lead to recommendations to improve aptasensor performance.
Collapse
Affiliation(s)
- Spurti U Akki
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 North Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Charles J Werth
- Department of Civil, Architecture, and Environmental Engineering , University of Texas at Austin , 301 East Dean Keeton Street , Austin , Texas 78712 , United States
| |
Collapse
|
28
|
Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A. Mikrochim Acta 2018; 185:265. [DOI: 10.1007/s00604-018-2810-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/14/2018] [Indexed: 12/12/2022]
|
29
|
Ahmad R, Mahmoudi T, Ahn MS, Hahn YB. Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosens Bioelectron 2018; 100:312-325. [PMID: 28942344 PMCID: PMC7126762 DOI: 10.1016/j.bios.2017.09.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022]
Abstract
Nanowires (NWs)-based field-effect transistors (FETs) have attracted considerable interest to develop innovative biosensors using NWs of different materials (i.e. semiconductors, polymers, etc.). NWs-based FETs provide significant advantages over the other bulk or non-NWs nanomaterials-based FETs. As the building blocks for FET-based biosensors, one-dimensional NWs offer excellent surface-to-volume ratio and are more suitable and sensitive for sensing applications. During the past decade, FET-based biosensors are smartly designed and used due to their great specificity, sensitivity, and high selectivity. Additionally, they have the advantage of low weight, low cost of mass production, small size and compatible with commercial planar processes for large-scale circuitry. In this respect, we summarize the recent advances of NWs-based FET biosensors for different biomolecule detection i.e. glucose, cholesterol, uric acid, urea, hormone, proteins, nucleotide, biomarkers, etc. A comparative sensing performance, present challenges, and future prospects of NWs-based FET biosensors are discussed in detail.
Collapse
Affiliation(s)
- Rafiq Ahmad
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Tahmineh Mahmoudi
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Min-Sang Ahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Yoon-Bong Hahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
30
|
Jeong YJ, Koo WT, Jang JS, Kim DH, Kim MH, Kim ID. Nanoscale PtO 2 Catalysts-Loaded SnO 2 Multichannel Nanofibers toward Highly Sensitive Acetone Sensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2016-2025. [PMID: 29260542 DOI: 10.1021/acsami.7b16258] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PtO2 nanocatalysts-loaded SnO2 multichannel nanofibers (PtO2-SnO2 MCNFs) were synthesized by single-spinneret electrospinning combined with apoferritin and two immiscible polymers, i.e., poly(vinylpyrrolidone) and polyacrylonitrile. The apoferritin, which can encapsulate nanoparticles within a small inner cavity (8 nm), was used as a catalyst loading template for an effective functionalization of the PtO2 catalysts. Taking advantage of the multichannel structure with a high porosity, effective activation of catalysts on both interior and exterior site of MCNFs was realized. As a result, under high humidity condition (95% RH), PtO2-SnO2 MCNFs exhibited a remarkably high acetone response (Rair/Rgas = 194.15) toward 5 ppm acetone gases, superior selectivity to acetone molecules among various interfering gas species, and excellent stability during 30 cycles of response and recovery toward 1 ppm acetone gases. In this work, we first demonstrate the high suitability of multichannel semiconducting metal oxides structure functionalized by apoferritin-encapsulated catalytic nanoparticles as highly sensitive and selective gas-sensing layer.
Collapse
Affiliation(s)
- Yong Jin Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Hyeok Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
31
|
Molybdenum diselenide nanosheets wraping carbon aerogel nanospheres as an advanced material for supercapacitor and electrochemical sensing. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Sapountzi E, Braiek M, Chateaux JF, Jaffrezic-Renault N, Lagarde F. Recent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1887. [PMID: 28813013 PMCID: PMC5579928 DOI: 10.3390/s17081887] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 01/08/2023]
Abstract
Electrospinning has emerged as a very powerful method combining efficiency, versatility and low cost to elaborate scalable ordered and complex nanofibrous assemblies from a rich variety of polymers. Electrospun nanofibers have demonstrated high potential for a wide spectrum of applications, including drug delivery, tissue engineering, energy conversion and storage, or physical and chemical sensors. The number of works related to biosensing devices integrating electrospun nanofibers has also increased substantially over the last decade. This review provides an overview of the current research activities and new trends in the field. Retaining the bioreceptor functionality is one of the main challenges associated with the production of nanofiber-based biosensing interfaces. The bioreceptors can be immobilized using various strategies, depending on the physical and chemical characteristics of both bioreceptors and nanofiber scaffolds, and on their interfacial interactions. The production of nanobiocomposites constituted by carbon, metal oxide or polymer electrospun nanofibers integrating bioreceptors and conductive nanomaterials (e.g., carbon nanotubes, metal nanoparticles) has been one of the major trends in the last few years. The use of electrospun nanofibers in ELISA-type bioassays, lab-on-a-chip and paper-based point-of-care devices is also highly promising. After a short and general description of electrospinning process, the different strategies to produce electrospun nanofiber biosensing interfaces are discussed.
Collapse
Affiliation(s)
- Eleni Sapountzi
- Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue la Doua, F-69100 Villeurbanne, France.
| | - Mohamed Braiek
- Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue la Doua, F-69100 Villeurbanne, France.
- Laboratoire des Interfaces et des Matériaux Avancés, Faculté des Sciences de Monastir, Avenue de l'Environnement, University of Monastir, Monastir 5019, Tunisia.
| | - Jean-François Chateaux
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut des Nanotechnologies de Lyon, UMR5270, Bâtiment Léon Brillouin, 6, rue Ada Byron, F-69622 Villeurbanne CEDEX, France.
| | - Nicole Jaffrezic-Renault
- Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue la Doua, F-69100 Villeurbanne, France.
| | - Florence Lagarde
- Université Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue la Doua, F-69100 Villeurbanne, France.
| |
Collapse
|
33
|
Suaebah E, Naramura T, Myodo M, Hasegawa M, Shoji S, Buendia JJ, Kawarada H. Aptamer-Based Carboxyl-Terminated Nanocrystalline Diamond Sensing Arrays for Adenosine Triphosphate Detection. SENSORS 2017; 17:s17071686. [PMID: 28753998 PMCID: PMC5539861 DOI: 10.3390/s17071686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
Abstract
Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP) detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD). Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification) was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current–drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current–drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface.
Collapse
Affiliation(s)
- Evi Suaebah
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Takuro Naramura
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Miho Myodo
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Masataka Hasegawa
- Technology Research Association for Single Wall Carbon Nanotube (TASC), 1-1-1 Higashi, Tsukuba 305-8565, Japan.
| | - Shuichi Shoji
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Jorge J Buendia
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Hiroshi Kawarada
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
- Kagami Memorial Research Institute for Material Science and Technology, Shinjuku-ku, Tokyo 169-0051, Japan.
| |
Collapse
|
34
|
Zhu H, Yu D, Zhang S, Chen J, Wu W, Wan M, Wang L, Zhang M, Du M. Morphology and Structure Engineering in Nanofiber Reactor: Tubular Hierarchical Integrated Networks Composed of Dual Phase Octahedral CoMn 2 O 4 /Carbon Nanofibers for Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700468. [PMID: 28544445 DOI: 10.1002/smll.201700468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/05/2017] [Indexed: 06/07/2023]
Abstract
1D hollow nanostructures combine the advantages of enhanced surface-to-volume ratio, short transport lengths, and efficient 1D electron transport, which can provide more design ideas for the preparation of highly active oxygen evolution (OER) electrocatalysts. A unique architecture of dual-phase octahedral CoMn2 O4 /carbon hollow nanofibers has been prepared via a two-step heat-treatment process including preoxidation treatment and Ostwald ripening process. The hollow and porous structures provide interior void spaces, large exposed surfaces, and high contact areas between the nanofibers and electrolyte and the morphology can be engineered by adjusting the heating conditions. Due to the intimate electrical and chemical coupling between the oxide nanocrystals and integrated carbon, the dual-phase octahedral CoMn2 O4 /carbon hollow nanofibers exhibit excellent OER activity with overpotentials of 337 mV at current density of 10 mA cm-2 and Tafel slope of 82 mV dec-1 . This approach will lead to the new perception of design issue for the nanoarchitecture with fine morphology, structures, and excellent electrocatalytic activity.
Collapse
Affiliation(s)
- Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Danni Yu
- College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Songge Zhang
- College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jiawei Chen
- College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Meng Wan
- College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Lina Wang
- College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ming Zhang
- College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- College of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
35
|
An JH, Jang J. A highly sensitive FET-type aptasensor using flower-like MoS 2 nanospheres for real-time detection of arsenic(iii). NANOSCALE 2017; 9:7483-7492. [PMID: 28530303 DOI: 10.1039/c7nr01661a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arsenic (As) contamination in drinking water is problematic due to its threat to human health. Highly stable, sensitive and selective sensors are needed for As(iii), which is the most toxic of the various forms of arsenic. Herein, we describe the fabrication of field-effect transistor (FET)-type aptasensors for As(iii) detection that is based on carboxylic polypyrrole (CPPy)-coated flower-like MoS2 nanospheres (CFMNSs). Arsenic-binding aptamer-conjugated CFMNSs were integrated into a liquid-ion gated FET system, leading to extraordinary performance with a rapid response (on a time scale of less than 1 s). Field-induced current changes occurred through the interaction between the aptamer and As(iii), resulting in sensitive discrimination of As(iii) at unprecedentedly low concentrations (ca. 1 pM). Moreover, the CFMNS-based aptasensor selectively recognized As(iii) among numerous other metal ions and accurately detected As(iii) in a mixed solution. The FET aptasensor could also discriminate target analytes in a real sample derived from river water. This MoS2-based aptasensor is a promising tool for the detection of As(iii) and could be used in a wide range of practical applications.
Collapse
Affiliation(s)
- Ji Hyun An
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea.
| | | |
Collapse
|
36
|
Versatile transduction scheme based on electrolyte-gated organic field-effect transistor used as immunoassay readout system. Biosens Bioelectron 2017; 92:215-220. [DOI: 10.1016/j.bios.2017.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 01/12/2023]
|
37
|
Hu LY, Niu CG, Wang XY, Huang DW, Zhang L, Zeng GM. Magnetic separate "turn-on" fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene. Talanta 2017; 168:196-202. [PMID: 28391842 DOI: 10.1016/j.talanta.2017.03.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 01/03/2023]
Abstract
Bisphenol A (BPA) is commonly considered to cause a health hazard to wildlife and humans, acting as an exogenous estrogen. Herein, a magnetic separate "turn-on" fluorescent method for the detection of BPA was proposed based on fluorescence resonance energy transfer (FRET) between fluorescein-labeled BPA aptamer and magnetic oxidation graphene (MGO). At different concentrations of BPA, the fluorescence intensity of the sensing system was varied. The detection limit of 0.071ng/mL was obtained with the linear range of 0.2-10ng/mL. The biosensor exhibited excellent anti-interference ability and selectivity in actual water samples.
Collapse
Affiliation(s)
- Liu-Yin Hu
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Cheng-Gang Niu
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Xiao-Yu Wang
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Da-Wei Huang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of PRC, Guangzhou 510655, China.
| | - Lei Zhang
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Guang-Ming Zeng
- College of Environmental Science Engineering, Key Laboratory of Environmental Biology Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
38
|
Lim HJ, Chua B, Son A. Detection of bisphenol A using palm-size NanoAptamer analyzer. Biosens Bioelectron 2017; 94:10-18. [PMID: 28237901 DOI: 10.1016/j.bios.2017.02.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
We have demonstrated a palm-size NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (<1ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. Modified NanoGene assay was used as the sensing mechanism where signaling DNA and QD655 was tethered to QD565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD655 from the complex and hence corresponding decrease in QD655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Beelee Chua
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea.
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
da Silva ETSG, Souto DEP, Barragan JTC, de F. Giarola J, de Moraes ACM, Kubota LT. Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017. [DOI: 10.1002/celc.201600758] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Everson T. S. G. da Silva
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Dênio E. P. Souto
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - José T. C. Barragan
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Juliana de F. Giarola
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Ana C. M. de Moraes
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Lauro T. Kubota
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| |
Collapse
|
40
|
Byeon HH, Lee SW, Lee EH, Kim W, Yi H. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors. Sci Rep 2016; 6:35591. [PMID: 27762315 PMCID: PMC5071876 DOI: 10.1038/srep35591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/03/2016] [Indexed: 01/05/2023] Open
Abstract
Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces.
Collapse
Affiliation(s)
- Hye-Hyeon Byeon
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,Department of Nano Semiconductor Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Woo Lee
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun-Hee Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Woong Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
41
|
Mirzajani H, Cheng C, Wu J, Chen J, Eda S, Najafi Aghdam E, Badri Ghavifekr H. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods. Biosens Bioelectron 2016; 89:1059-1067. [PMID: 27825518 DOI: 10.1016/j.bios.2016.09.109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/24/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples.
Collapse
Affiliation(s)
- Hadi Mirzajani
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN 37966, USA; Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| | - Cheng Cheng
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN 37966, USA
| | - Jayne Wu
- The University of Tennessee, Knoxville, Department of Electrical Engineering and Computer Science, 1520 Middle Drive, Knoxville, TN 37966, USA.
| | - Jiangang Chen
- The University of Tennessee, Department of Public Health, 1914 Andy Holt Avenue, Knoxville, TN 37996, USA
| | - Shigotoshi Eda
- University of Tennessee Institute of Agriculture, Department of Forestry, Wildlife and Fisheries, 2431 Joe Johnson Drive, Knoxville, TN 37996, USA
| | - Esmaeil Najafi Aghdam
- Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| | - Habib Badri Ghavifekr
- Sahand University of Technology, Department of Electrical Engineering, Microelectronics Research Lab., Tabriz, Iran
| |
Collapse
|
42
|
Cheng C, Wang S, Wu J, Yu Y, Li R, Eda S, Chen J, Feng G, Lawrie B, Hu A. Bisphenol A Sensors on Polyimide Fabricated by Laser Direct Writing for Onsite River Water Monitoring at Attomolar Concentration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17784-92. [PMID: 27351908 DOI: 10.1021/acsami.6b03743] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on the electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by ac electroosmotic effect that accelerates the transport of BPA molecules to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery analysis of BPA spiked in surface water. This work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecological impact of BPA exposure.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Electrical Engineering and Computer Science, The University of Tennessee , 1520 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Shutong Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee , 1512 Middle Drive, Knoxville, Tennessee 37996, United States
- College of Electronics and Information Engineering, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PRC
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee , 1520 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Yongchao Yu
- Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee , 1512 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Ruozhou Li
- Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee , 1512 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institute of Agriculture , 2431 Joe Johnson Drive, Knoxville, Tennessee 37996, United States
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee , 1914 Andy Holt Avenue, Knoxville, Tennessee 37996, United States
| | - Guoying Feng
- College of Electronics and Information Engineering, Sichuan University , No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PRC
| | - Benjamin Lawrie
- Computing Science and Engineering Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Anming Hu
- Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee , 1512 Middle Drive, Knoxville, Tennessee 37996, United States
- Institute of Laser Engineering, Beijing University of Technology , 100 Pingleyuan, Chaoyang District, Beijing 100124, PRC
| |
Collapse
|
43
|
Zhou L, Jiang D, Du X, Chen D, Qian J, Liu Q, Hao N, Wang K. Femtomolar sensitivity of bisphenol A photoelectrochemical aptasensor induced by visible light-driven TiO2 nanoparticle-decorated nitrogen-doped graphene. J Mater Chem B 2016; 4:6249-6257. [DOI: 10.1039/c6tb01414c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Efficient charge transfer takes place by coupling nitrogen doped graphene with TiO2 and the charge recombination of the composites is significantly suppressed, resulting enhanced photocurrent responses than pristine TiO2.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Ding Jiang
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Xiaojiao Du
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Danyang Chen
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| |
Collapse
|